
 Sigma Xi, The Scientific Research Society is collaborating with JSTOR to digitize, preserve and extend access to American
Scientist.

http://www.jstor.org

Sigma Xi, The Scientific Research Society

The Science of Computing: Genetic Algorithms
Author(s): Peter J. Denning
Source: American Scientist, Vol. 80, No. 1 (January-February 1992), pp. 12-14
Published by: Sigma Xi, The Scientific Research Society
Stable URL: http://www.jstor.org/stable/29774553
Accessed: 24-10-2015 14:40 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship.
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 132.174.255.116 on Sat, 24 Oct 2015 14:40:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=sigmaxi
http://www.jstor.org/stable/29774553
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

The Science of Computing

Genetic Algorithms

Peter J. Denning

Biological
analogies have been part of the science and the

lore of computation since the 1940s. The early theory of
automata, which assumed machines were made of neuron?
like components, produced the first examples of self-repro?
ducing machines. Over the years many debates in artificial

intelligence have centered on biological metaphors?for ex?

ample, whether machines can think, whether rule-based ex?

pert systems can be competent when judged by human
standards, and whether neural networks can give machines
the ability to see or hear. Recent biocomputational successes

with robot insects and simulations of population dynamics
have encouraged a growing number of adherents to a new
field called artificial life. Computer scientists and molecular

biologists have begun to explore collaborative research (1).
And the metaphor has even wider application: Computer
viruses are routinely discussed as if they were a form of par?
asitic life inside a computer.

Analogies between computing and biology are more than
coincidence: Both genes and computers record, copy, and
disseminate information. Douglas Hofstadter of Indiana

University showed this clearly by demonstrating that the
action of DNA and RNA during the reproduction of the liv?

ing cell can be interpreted as an example of a self-reproduc
ing Turing machine (2).
Nowhere have these analogies produced greater successes

than with genetic algorithms, a family of methods that search
for optimal solutions of difficult problems. The story begins
in the late 1960s at the University of Michigan, where John

Holland and his students investigated how to build machines
that can learn. Holland noted that learning can occur not only
by adaptation in a single organism but also by evolutionary
adaptation over many generations of a species. He was in?

spired by a Darwinian notion of evolution in which only the
fittest survive. He proposed that a learning machine's search
for a good learning strategy be organized as the breeding of

many strategies in a population of candidates, rather than as
the construction and refinement of a single strategy. Holland
and his students called their searches reproductive plans, but
the name genetic algorithms became popular after Holland

published a seminal book in 1975 (3).

By the early 1980s genetic algorithms were showing
broad promise. The leaders of the field began holding regu?
lar conferences every other year. In 1989 David Goldberg of
the University of Alabama published a book that demon?
strated a solid scientific basis for the field and cited no fewer
than 73 successful applications (4). In 1991 Lawrence Davis
of Tica Associates published a handbook of genetic algo?
rithms (5). The field has turned into a gold mine of opportu

Peter J. Denning is associate dean and chair of computer science in the

school of information technology and engineering at George Mason

University, Fairfax, VA 22030. His internet address is pjd@cs.g7nu.edu.

nity for exploring biological analogies in computing and in?
formation analogies in biology.

Exploring Parameter Space
For many practical problems in engineering and science the

only sure way to find an optimal solution is to search

through the entire set of all possible solutions. Such an ex?
haustive search is described as exploring the total "parame?
ter space" of the problem. In many cases the parameter
space is so large that only a minute fraction of it can be ex?

plored. The question then becomes: How can one organize
the search so that there is a high likelihood of locating a

near-optimal solution?
The usual approach is to iteratively refine a trial solution

until the refinement heuristic produces no further improve?
ments. Genetic search algorithms take a different approach.
Inspired by biological evolution, they cross-breed trial solu?
tions and allow only the "fittest" solutions (those accorded
the highest value) to survive after several generations.

In its simplest form, a genetic search works as follows.
First, the problem is formulated in such a way that any solu?
tion can be encoded in a string of binary digits. Each such

string can be assigned a fitness value, based on how well the

corresponding problem solution meets some stated goal.
Starting with a population of strings, a new population of
the same size is generated in two stages, called reproduction
and mating. In the reproduction stage, each individual's

probability of being reproduced is proportional to the

string's fitness. One way to arrange for such proportional re?

production is to create a roulette wheel whose circumfer?
ence is divided into as many segments as there are binary
strings in the population. The length of each segment is

made proportional to the fitness of the corresponding string.
Reproduction proceeds by spinning the wheel many times,
and each time selecting a string to carry forward into the
next generation. In this way the reproduction step generates
a list of copies of a subset of the starting population. The
fittest individuals tend to produce the most copies.

The mating stage simulates the recombination of genetic
elements made possible by sexual modes of reproduction.

Mating begins with the selection of a random integer larger
than zero and less than the string length, defining thereby a
crossover point. Two strings are mated by joining the prefix
of one string with the suffix of the other string relative to the
crossover point. For example, suppose the prefix length is 3
and the two individuals selected for mating are:

010 I 110
110 I Oil

(the vertical line marks the crossover point). Then the

binary strings resulting from the crossover operation are:
010011
110110

12 American Scientist, Volume 80

This content downloaded from 132.174.255.116 on Sat, 24 Oct 2015 14:40:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

11100001

10110011

01110000

00001000

01101011

10110111

11100001

01011111

00001000

11100001

11100001

10110011

00001000

00001000

11100001

01101011

11101000

00000001

11100011

10110001

00001000

00001000

01100001

11101011

11101000

00000001

10100011

10110001

00001000

00001000

01100001

11101011

Figure 1. Genetic algorithms employ the mechanisms of evolution to solve optimization problems. Each candidate solution is encoded in a

string of binary digits and assigned a "fitness," which is represented here by the length of the red bar superimposed on the string. A

population of strings evolves through selective reproduction, recombination and mutation.

Avoiding Local Optima
With any sparse search through a large parameter space
there is a danger of converging on a solution that is only lo?

cally rather than globally optimal. To avoid such traps, mu?
tations are introduced during the mating stage: Each binary
digit has some small probability of being reversed during
the genetic recombination.

Kenneth Dejong of George Mason University performed
extensive experimental studies of genetic algorithms begin?
ning in the late 1970s. He reports that populations of 50 to
100 individuals taken through 10 to 20 generations have a

high probability of including optimal or near-optimal indi?
viduals (6). This finding holds for a wide variety of problem
spaces. Dejong says that a mutation probability on the order
of 0.001 per bit is enough to prevent the search from locking
onto a local optimum.

The type of search outlined above works when the encod?

ings of solutions are all the same length and when any bina?

ry string defines a valid solution of the problem. However,
there are many situations in which some binary strings do
not define valid solutions. In such cases, a crossover opera?
tion could produce meaningless strings.

As an example, consider the problem of mapping the

points of a grid to the nodes of a massively parallel comput?
er so as to minimize the average communication distance
between neighboring grid points. This distance is important
because in many programs?such as weather simula?

tions?calculating a new value at each grid point requires
communication with nearby points. Suppose there are K

computing nodes in the machine. An assignment of grid
points to machine nodes is encoded as a long vector of inte?

gers (nv n^, in which n. is the machine node to which

grid point i is assigned; this vector is a permutation of the

integers 1 through K; in other words each integer from 1

through K appears in the vector exactly once. Most
crossover operations are likely to produce vectors that are
not permutations of 1 through K.

Cases of this kind can be brought into the paradigm of ge?
netic search by defining crossover operators that preserve
the validity of the encoding. Here the need is for a crossover

procedure that permutes elements of a vector rather than re?

placing them. One such operator was proposed and used

successfully by Ophir Frieder of George Mason University
and Hava Tova Siegelmann of Rutgers University (7) for as?

signing documents to the nodes of a multimachine data?
base, a problem similar to the grid assignment problem.

Suppose these two vectors are possible assignments:

1532 I 704 I 968
7409 I 651 I 328

The standard crossover procedure might suggest, say, ex?

changing the central segments of the vectors (between the
vertical lines); this transformation would not be legal, how?
ever, since neither vector would then be a permutation of
the integers 0 through 9. But there is a method of making
the exchange while preserving the permutations. The idea is
to use the corresponding pairs of integers within the select?
ed segments of the two vectors to define a series of ex?

changes that can then be carried out separately within each
vector. In this case the pairs are 7:6,0:5 and 4:1. When these

exchanges are carried out in both vectors, the desired
crossover is achieved without sacrificing the essential char?
acter of the vectors as permutations:

4032 I 651 I 978
6159 I 704 I 328

values
2 4 1 6 3 3

inventory of objects to be packed

candidate packings

a be I 9

Figure 2. Knapsack problem is an example of an optimization task

that can be undertaken by genetic search algorithms. The problem
is to pack a knapsack of limited volume with a selection of items

that maximizes some measure of value. In this one-dimensional

version of the problem the knapsack has a length of seven units,
and there are six objects with lengths ranging from one to three.

Some possible packings are shown, including one that yields the

optimal value of 14.

1992 January-February 13

This content downloaded from 132.174.255.116 on Sat, 24 Oct 2015 14:40:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

011011

00101 1

101100

011001

001100

111000

011011

011001

0110 0

011001

01 1011

101100

011011

101011

111001

011100

01

01

1011

1 100

011011

101011

1 1 1 000

011101

011100

101011

Figure 3. Optimum knapsack packing emerges after a few iterations of a genetic algorithm. Each selection of objects is represented by a binary

string; for example, 011011 designates the choices of b, c, e and /. Total population fitness rises from 49 to 63, and an optimum solution appears.

The simple operations of reproduction, crossover and mu?
tation on populations are the essence of genetic algorithms.
Traditional methods for locating optimal solutions use heuris?
tics that explore the neighborhood around a single trial solu?

tion; even when augmented with occasional jumps to distant

parts of the solution space, these heuristics tend to get
snagged on local optima. By mamtaining a multipoint per?
spective on many regions of the space, genetic algorithms
have a much higher chance of locating a global optimum.
They do this even when the function defining fitness is dis?
continuous, irregular or noisy. David Goldberg and Lawrence
Davis document these claims empirically (4,5).

Machines That Learn
Genetic algorithms have an impressive record of progress as
a heuristic search method. Their progress in the domain that

originally inspired their development, machine learning, is

equally impressive.
The objective of machine learning is easily stated: to build

a machine capable of performing certain actions even

though the builders do not know algorithms for those ac?
tions. Examples of behaviors such a machine might learn
are walking toward darkness, grasping objects, and recog?
nizing images. Internally, the machine is organized around a
controller that receives sensory inputs from one or more de?
tectors and generates actions through one or more output
devices. After each action the machine receives feedback
about the effectiveness of the action; this feedback is called
the payoff. The controller uses the payoff to adjust its inter?
nal program and database so that future actions are more

likely to produce high payoffs. The payoff function is not
known to the machine.

The simplest type of learning machine is an associator be?
tween input patterns (from sensors) and output patterns
(driving motors). The machine is shown a series of exam?

ples, each consisting of an input and a corresponding ideal

output. On the basis of the examples the machine adjusts in?
ternal parameters of an associative memory so that it mini?

mizes its errors in generating outputs for a given series of

inputs. After the training session, the machine is judged by
its ability to "predict" outputs in real time. An example of
such a machine is an optical character recognizer whose in?

puts are images of handwritten characters and whose out?

puts are ASCII codes (the standard numeric representations
of alphanumeric data). Genetic searches have been used

successfully to identify internal parameters of the associa?
tive memory that minimize error during training.

Learning machines of this kind employ a payoff function
that is known in advance; the payoff is determined by the
difference between the output for a given setting of the pa

rameters and the correct output. A more advanced form of

learning machine is needed for the case when payoffs are
not known in advance but are received in real time as the
machine performs actions. Now the machine's internal
structure can be represented by a set of rules telling it how
to respond to given inputs. After each action, the machine
uses the resulting payoff feedback to modify its rule set so
that either an effective behavior is reinforced or an ineffec?
tive behavior is dropped. Machines of this type include the
robot insects under study at the Massachusetts Institute of

Technology and elsewhere, which can learn to walk, hide
from light, locate doorways, and hunt for simple targets (8).

Although not used in the MIT insectoids, genetic search is
under study as a new method of modifying the rule set of
such machines when new payoff information is provided.

The power of genetic algorithms derives from their emu?
lation of nature's principle of evolution over generations of
a species. In the case of searches for optima, a population of
candidates is allowed to evolve over several generations,
with the fittest individuals having the best chances of sur?
vival. In the case of learning machines, a population of rules
evolves over time, and the rules producing the highest pay?
offs come to dominate the population.

Through most of their history, genetic algorithms were
used as optimizers and searchers. They are now well under?
stood in this role. A major shift is under way: Genetic algo?
rithms are being used as the builders of programs inside

learning machines. One might speculate about using such
machines to design organisms whose genetic codes endow
them with desirable characteristics. This is a development

worth watching closely.

References
1. Eric S. Lander, Robert Landridge and Damian M. Saccocio. 1991.

Mapping and interpreting biological information. Communications of
the ACM 34 (September): 33-39.

2. Douglas R. Hofstadter. 1985. The genetic code: arbitrary? In Metamag
ical Themas, 671-699. New York: Basic Books.

3. John H. Holland. 1975. Adaptation in Natural and Artificial Systems.
Ann Arbor: University of Michigan Press.

4. David E. Goldberg. 1989. Genetic Algorithms. Reading, Mass.: Addi

son-Wesley.
5. Lawrence Davis (ed.). 1991. Handbook of Genetic Algorithms. New York:

Van Nostrand Reinhold.

6. Kenneth Dejong. 1988. Learning with genetic algorithms: An
overview. Machine Learning 3:121-138.

7. Ophir Frieder and Hava Tova Siegelmann. 1991. On the allocation of
documents in multiprocessor information retrieval systems. Proceed?

ings of the 14th Annual ACM/SIGIR Conference on Research and Develop?
ment in Information Retrieval, 230-239. New York: ACM Press.

8. Paul Wallich. 1991. Silicon babies. Scientific American 265 (Decem

ber):124#.

14 American Scientist, Volume 80

This content downloaded from 132.174.255.116 on Sat, 24 Oct 2015 14:40:19 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 12
	p. 13
	p. 14

	Issue Table of Contents
	American Scientist, Vol. 80, No. 1 (January-February 1992) pp. 1-104
	Front Matter
	Letters to the Editors [pp. 3-6, 8]
	Sigma Xi News [pp. 9-9]
	Marginalia: Art and Science, Money and Morals [pp. 10-11]
	The Science of Computing: Genetic Algorithms [pp. 12-14]
	Engineering: Isambard Kingdom Brunel [pp. 15-19]
	Liposomes [pp. 20-31]
	The Voyage of Iceberg B-9 [pp. 32-42]
	Naked Mole-Rats [pp. 43-53]
	Case Studies in Pathological Science [pp. 54-63]
	Ockham's Razor and Bayesian Analysis [pp. 64-72]
	Sigma Xi Statement on the Use of Animals in Research [pp. 73-76]
	The Scientists' Bookshelf
	A Logbook of the Spacefaring Era [pp. 77-78]
	Reconstructing the Primate Family Tree [pp. 78-79]
	Prediction, Explanation and Castigation [pp. 79-80]
	Physical Sciences
	Review: untitled [pp. 80, 82]
	Review: untitled [pp. 82-82]
	Review: untitled [pp. 82-83]

	Earth Sciences
	Review: untitled [pp. 83-84]
	Review: untitled [pp. 84-84]
	Review: untitled [pp. 84-85]

	Life Sciences
	Review: untitled [pp. 85-85]
	Review: untitled [pp. 85-86]
	Review: untitled [pp. 86-86]
	Review: untitled [pp. 86-87]
	Review: untitled [pp. 87-87]
	Review: untitled [pp. 87-88]
	Review: untitled [pp. 88-88]
	Review: untitled [pp. 88-89]

	Behavioral Sciences
	Review: untitled [pp. 89-89]
	Review: untitled [pp. 89-90]
	Review: untitled [pp. 90-90]

	Mathematics and Computer Sciences
	Review: untitled [pp. 90-91]

	Erratum [pp. 91-91]
	The Scientists' Bookshelf
	Mathematics and Computer Sciences
	Review: untitled [pp. 91-92]

	Engineering and Applied Sciences
	Review: untitled [pp. 92-92]
	Review: untitled [pp. 92-93]
	Review: untitled [pp. 93-94]
	Review: untitled [pp. 94-94]

	History and Philosophy of Science
	Review: untitled [pp. 94-94]

	Sigma Xi National Lecturers, 1992-1993 [pp. 95-104]
	Back Matter

