Problems 53

PROBLEMS

SECTION 1.1. Sets

Problem 1. Consider rolling a six-sided die. Let A be the set of outcomes where the
roll is an even number. Let B be the set of outcomes where the roll is greater than 3.
Calculate and compare the sets on both sides of De Morgan’s laws

(AUB)'=A°nB°. (ANB) = A°UB"

Problem 2. Let A and B be two sets.
(a) Show that

A= (A"NB)U (A" N B, B = (AN B )U(A°N B°).

(b) Show that
(ANB) ' =(A°"NB)U(A°NB)U (AN B°).

(c) Consider rolling a fair six-sided die. Let A be the set of outcomes where the roll
is an odd number. Let B be the set of outcomes where the roll is less than 4.
Calculate the sets on both sides of the equality in part (b), and verify that the
equality holds.

Problem 3.* Prove the identity
AU (M%) Bn) =M1 (AU By).

Solution. If z belongs to the set on the left, there are two possibilities. Either z € A,
in which case z belongs to all of the sets A U B,,. and therefore belongs to the set on
the right. Alternatively. z belongs to all of the sets B, in which case. it belongs to all
of the sets A U B,. and therefore again belongs to the set on the right.

Conversely. if T belongs to the set on the right. then it belongs to AU B, for all
n. If T belongs to A. then it belongs to the set on the left. Otherwise. £ must belong
to every set B, and again belongs to the set on the left.

Problem 4.* Cantor’s diagonalization argument. Show that the unit interval
[0, 1] is uncountable. i.e., its elements cannot be arranged in a sequence.

Solution. Any number z in [0. 1] can be represented in terms of its decimal expansion.
eg., 1/3 = 0.3333--.. Note that most numbers have a unique decimal expansion,
but there are a few exceptions. For example, 1/2 can be represented as 0.5000- - - or
as 0.49999.-. It can be shown that this is the only kind of exception, i.e.. decimal
expansions that end with an infinite string of zeroes or an infinite string of nines.
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Suppose, to obtain a contradiction, that the elements of [0, 1] can be arranged
in a sequence r,,T2,z3,..., so that every element of [0,1] appears in the sequence.
Consider the decimal expansion of z,:

1 2 3
Tn = 0.ana,0, -,

where each digit a?, belongs to {0,1,...,9}. Consider now a number y constructed as
follows. The nth digit of y can be 1 or 2, and is chosen so that it is different from the
nth digit of .. Note that y has a unique decimal expansion since it does not end with
an infinite sequence of zeroes or nines. The number y differs from each z,, since it has
a different nth digit. Therefore, the sequence z1, z2, ... does not exhaust the elements
of [0, 1], contrary to what was assumed. The contradiction establishes that the set [0, 1]
is uncountable.

SECTION 1.2. Probabilistic Models

Problem 5. Out of the students in a class, 60% are geniuses, 70% love chocolate,
and 40% fall into both categories. Determine the probability that a randomly selected
student is neither a genius nor a chocolate lover.

Problem 6. A six-sided die is loaded in a way that each even face is twice as likely
as each odd face. All even faces are equally likely, as are all odd faces. Construct a
probabilistic model for a single roll of this die and find the probability that the outcome
is less than 4.

Problem 7. A four-sided die is rolled repeatedly, until the first time (if ever) that an
even number is obtained. What is the sample space for this experiment?

Problem 8. You enter a special kind of chess tournament, in which you play one game
with each of three opponents, but you get to choose the order in which you play your
opponents, knowing the probability of a win against each. You win the tournament if
you win two games in a row, and you want to maximize the probability of winning.
Show that it is optimal to play the weakest opponent second, and that the order of
playing the other two opponents does not matter.

Problem 9. A partition of the sample space 2 is a collection of disjoint events
S1,...,S5n such that Q = U}, S;.

(@) Show that for any event A, we have
P(A) = Z P(ANS:).
i=1

(b) Use part (a) to show that for any events A, B, and C, we have
P(A) =P(ANB)+P(ANC)+P(ANB°NC°) —P(ANBNC).

Problem 10. Show the formula

P((ANB°)U(A°N B)) = P(A) + P(B) - 2P(AN B),
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which gives the probability that exactly one of the events A and B will occur. [Compare
with the formula P(A U B) = P(A) + P(B) — P(A N B), which gives the probability
that at least one of the events A and B will occur.]
Problem 11.* Bonferroni’s inequality.
(a) Prove that for any two events A and B, we have
P(ANnB) >P(A)+P(B) - 1.
(b) Generalize to the case of n events A, A2, ..., A, by showing that
P(A1NA2N---NA,) >P(A1)+P(A2) + -+ P(An) — (n - 1).
Solution. We have P(AUB) = P(A) + P(B) — P(ANB) and P(AU B) < 1. which
implies part (a). For part (b), we use De Morgan’s law to obtain
1-P(AiN---NA) =P((A1N---N A)°)
=P(ATU---UA})
< P(A5) + -+ + P(AS)
= (1-P(A)) 4+ + (1 -P(An))
=n—-P(A,) —---—P(An).

Problem 12.* The inclusion-exclusion formula. Show the following generaliza-
tions of the formula

P(AU B) = P(A) + P(B) — P(AN B).
(a) Let A, B, and C be events. Then,
P(AUBUC) = P(A4)+P(B)+P(C)—P(ANB)—P(BNC)~P(ANC)+P(ANBNC).

(b) Let Ay, A2,...,A, be events. Let S; = {i|1 <7< n}, S2 ={(i1,i2)|1 <141 <
i2 < n}, and more generally, let S,, be the set of all m-tuples (i1,...,7m) of
indices that satisfy 1 < 1; <113 < --: < %, < n. Then.

P(Uisid) = ) P(A)— ) P4y NAy)
iESl (11,i2)632

+ > P(Ag NApNAg) =+ (-1)" TP (Mo Ax).
(11.12.i3)€S3

Solution. (a) We use the formulas P(X UY) = P(X) + P(Y) - P(X NY) and
(AUB)NC =(ANC)u(BNC). We have

P(AUBUC)=P(AUB)+P(C)-P((AuB)NC)
=P(AUB)+P(C)-P((ANC)U(BNC))
=P(AUB)+P(C)-P(ANC)-P(BNC)+P(ANBNC)
=P(A) +P(B)-P(ANB)+P(C)-P(ANC)-P(BNC)

+P(ANBNC)
=P(A)+P(B)+P(C)—P(ANB)—P(BNC)-P(ANC)
+P(ANBNC).
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(b) Use induction and verify the main induction step by emulating the derivation of
part (a). For a different approach, see the problems at the end of Chapter 2.

Problem 13.* Continuity property of probabilities.

(a) Let Ay, A2,... be an infinite sequence of events, which is “monotonically increas-
ing,” meaning that A, C An,4+ for every n. Let A = U3-;A,. Show that
P(A) = limp—oc P(An). Hint: Express the event A as a union of countably
many disjoint sets.

(b) Suppose now that the events are “monotonically decreasing,” i.e., An+1 C An
for every n. Let A = N;Z;An. Show that P(A) = limp_o P(An). Hint: Apply
the result of part (a) to the complements of the events.

(c) Consider a probabilistic model whose sample space is the real line. Show that

P([0,00)) = lim P([0,n]),  and lim P ([n,oc)) = 0.

n—0o0

Solution. (a) Let By = A; and, for n > 2, B, = A, N A{_,. The events B, are
disjoint, and we have U;;_, Bx = An, and Ug=, Bx = A. We apply the additivity axiom
to obtain

P(A) =) P(B) =n1Lr1;ZP(Bk) = lim P(UP_,Bx) = lim P(A,).
k=1 k=1

n—oo n—oc

(b) Let C, = Af, and C = A°. Since An+1 C An, we obtain C,, C Cr41, and the events
C, are increasing. Furthermore, C = A° = (N32,A4,)¢ = U2, 45, = USZ,Cr. Using
the result from part (a) for the sequence C,, we obtain

1-P(A) =P(A°) =P(C) = lim P(Cpn) = lim (1-P(An)),

n— 00

from which we conclude that P(A) = limn_ P(Ax).

(c) For the first equality, use the result from part (a) with A, = [0,n] and A = [0, 00).
For the second, use the result from part (b) with A, = [n,oc) and A = N3, 4, = 0.

SECTION 1.3. Conditional Probability
Problem 14. We roll two fair 6-sided dice. Each one of the 36 possible outcomes is
assumed to be equally likely.

(a) Find the probability that doubles are rolled.

(b) Given that the roll results in a sum of 4 or less, find the conditional probability
that doubles are rolled.

(c) Find the probability that at least one die roll is a 6.
(d) Given that the two dice land on different numbers, find the conditional probability

that at least one die roll is a 6.

Problem 15. A coin is tossed twice. Alice claims that the event of two heads is at
least as likely if we know that the first toss is a head than if we know that at least one
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of the tosses is a head. Is she right? Does it make a difference if the coin is fair or
unfair? How can we generalize Alice’s reasoning?

Problem 16. We are given three coins: one has heads in both faces, the second has
tails in both faces, and the third has a head in one face and a tail in the other. We
choose a coin at random, toss it, and the result is heads. What is the probability that
the opposite face is tails?

Problem 17. A batch of one hundred items is inspected by testing four randomly
selected items. If one of the four is defective, the batch is rejected. What is the
probability that the batch is accepted if it contains five defectives?

Problem 18. Let A and B be events. Show that P(AN B | B) = P(A| B), assuming
that P(B) > 0.

SECTION 1.4. Total Probability Theorem and Bayes’ Rule

Problem 19. Alice searches for her term paper in her filing cabinet. which has several
drawers. She knows that she left her term paper in drawer j with probability p; > 0.
The drawers are so messy that even if she correctly guesses that the term paper is in
drawer i. the probability that she finds it is only d;. Alice searches in a particular
drawer. say drawer i. but the search is unsuccessful. Conditioned on this event, show
that the probability that her paper is in drawer j, is given by
pi(1 —d:)

Dj if .
. if j # 1. = pid: "

1-pd; if j =1.

Problem 20. How an inferior player with a superior strategy can gain an
advantage. Boris is about to play a two-game chess match with an opponent, and
wants to find the strategy that maximizes his winning chances. Each game ends with
either a win by one of the players, or a draw. If the score is tied at the end of the two
games, the match goes into sudden-death mode, and the players continue to play until
the first time one of them wins a game (and the match). Boris has two playing styles.
timid and bold, and he can choose one of the two at will in each game. no matter what
style he chose in previous games. With timid play. he draws with probability ps > 0,
and he loses with probability 1 — ps. With bold play. he wins with probability p,,, and
he loses with probability 1 — p,,. Boris will always play bold during sudden death, but

may switch style between games 1 and 2.

(a) Find the probability that Boris wins the match for each of the following strategies:
(i) Play bold in both games 1 and 2.
(ii) Play timid in both games 1 and 2.
(iii) Play timid whenever he is ahead in the score. and play bold otherwise.

(b) Assume that p,, < 1/2, so Boris is the worse player, regardless of the playing
style he adopts. Show that with the strategy in (iii) above. and depending on
the values of p,, and ps. Boris may have a better than a 50-50 chance to win the
match. How do you explain this advantage?

Problem 21. Two players take turns removing a ball from a jar that initially contains
m white and n black balls. The first player to remove a white ball wins. Develop a



58 Sample Space and Probability Chap. 1

recursive formula that allows the convenient computation of the probability that the
starting player wins.

Problem 22. Each of k jars contains m white and n black balls. A ball is randomly
chosen from jar 1 and transferred to jar 2, then a ball is randomly chosen from jar 2
and transferred to jar 3, etc. Finally, a ball is randomly chosen from jar k. Show that
the probability that the last ball is white is the same as the probability that the first
ball is white, i.e., it is m/(m + n).

Problem 23. We have two jars, each initially containing an equal number of balls.
We perform four successive ball exchanges. In each exchange, we pick simultaneously
and at random a ball from each jar and move it to the other jar. What is the probability
that at the end of the four exchanges all the balls will be in the jar where they started?

Problem 24. The prisoner’s dilemma. The release of two out of three prisoners
has been announced. but their identity is kept secret. One of the prisoners considers
asking a friendly guard to tell him who is the prisoner other than himself that will be
released, but hesitates based on the following rationale: at the prisoner’s present state
of knowledge, the probability of being released is 2/3, but after he knows the answer,
the probability of being released will become 1/2, since there will be two prisoners
(including himself) whose fate is unknown and exactly one of the two will be released.
What is wrong with this line of reasoning?

Problem 25. A two-envelopes puzzle. You are handed two envelopes. and you
know that each contains a positive integer dollar amount and that the two amounts are
different. The values of these two amounts are modeled as constants that are unknown.
Without knowing what the amounts are, you select at random one of the two envelopes,
and after looking at the amount inside, you may switch envelopes if you wish. A friend
claims that the following strategy will increase above 1/2 your probability of ending
up with the envelope with the larger amount: toss a coin repeatedly. let X be equal to
1/2 plus the number of tosses required to obtain heads for the first time, and switch
if the amount in the envelope you selected is less than the value of X. Is your friend
correct?

Problem 26. The paradox of induction. Consider a statement whose truth is
unknown. If we see many examples that are compatible with it, we are tempted to
view the statement as more probable. Such reasoning is often referred to as induc-
tive inference (in a philosophical, rather than mathematical sense). Consider now the
statement that “all cows are white.” An equivalent statement is that “everything that
is not white is not a cow.” We then observe several black crows. Our observations are
clearly compatible with the statement. but do they make the hypothesis “all cows are
white” more likely?

To analyze such a situation, we consider a probabilistic model. Let us assume
that there are two possible states of the world, which we model as complementary

events:
A : all cows are white,

A€ : 50% of all cows are white.

Let p be the prior probability P(A) that all cows are white. We make an observation
of a cow or a crow, with probability g and 1 — q, respectively, independent of whether
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event A occurs or not. Assume that 0 < p < 1,0 < ¢ < 1, and that all crows are black.
(a) Given the event B = {a black crow was observed}, what is P(A| B)?
(b) Given the event C = {a white cow was observed}, what is P(A|C)?
Problem 27. Alice and Bob have 2n + 1 coins, each coin with probability of heads
equal to 1/2. Bob tosses n+1 coins, while Alice tosses the remaining n coins. Assuming

independent coin tosses, show that the probability that after all coins have been tossed,
Bob will have gotten more heads than Alice is 1/2.

Problem 28.* Conditional version of the total probability theorem. Let
Ci,...,C, be disjoint events that form a partition of the state space. Let also A and
B be events such that P(B N C;) > 0 for all <. Show that

P(A|B) =) P(Ci|B)P(A|BNC.).

i=1

Solution. We have R
P(ANB) = ZP((AO B)NC:),

i=1

and by using the multiplication rule,
P(((AnB)NC:) = P(B)P(Ci| B)P(A| BN Cy).
Combining these two equations, dividing by P(B), and using the formula P(A| B) =

P(AnN B)/P(B), we obtain the desired result.

Problem 29.* Let A and B be events with P(4) > 0 and P(B) > 0. We say that
an event B suggests an event A if P(A|B) > P(A), and does not suggest event A if
P(A| B) < P(A).

(a) Show that B suggests A if and only if A suggests B.

(b) Assume that P(B€) > 0. Show that B suggests A if and only if B does not
suggest A.

(c) We know that a treasure is located in one of two places, with probabilities 3 and
1 — 3, respectively, where 0 < 3 < 1. We search the first place and if the treasure
is there, we find it with probability p > 0. Show that the event of not finding the
treasure in the first place suggests that the treasure is in the second place.

Solution. (a) We have P(A|B) = P(AN B)/P(B), so B suggests A if and only if
P(An B) > P(A)P(B), which is equivalent to A suggesting B, by symmetry.

(b) Since P(B) + P(B) = 1, we have
P(B)P(A) + P(B°)P(A) =P(A) = P(B)P(A|B) + P(B°)P(A| BY),
which implies that

P(B°)(P(A) — P(A| B)) = P(B)(P(A| B) - P(A)).
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Thus, P(A| B) > P(A) (B suggests A) if and only if P(A) > P{A| B€) (B° does not
suggest A).

(c) Let A and B be the events

A = {the treasure is in the second place},

B = {we don't find the treasure in the first place}.
Using the total probability theorem. we have
P(B) = P(A°)P(B| A%) + P(A)P(B|A) = 3(1 - p) + (1 - 8),
S0

P(ANB) _ 1-3 _1-4
P(B)  B(l-p)+(1=58) 1-pp

It follows that event B suggests event A.

>1-3=P(A).

P(A|B) =

SECTION 1.5. Independence

Problem 830. A hunter has two hunting dogs. One day, on the trail of some animal,
the hunter comes to a place where the road diverges into two paths. He knows that
each dog. independent of the other. will choose the correct path with probability p.
The hunter decides to let each dog choose a path, and if they agree, take that one, and
if they disagree, to randomly pick a path. Is his strategy better than just letting one
of the two dogs decide on a path?

Problem 31. Communication through a noisy channel. A source transmits a
message (a string of symbols) through a noisy communication channel. Each symbol is
0 or 1 with probability p and 1 — p, respectively, and is received incorrectly with prob-
ability €p and ¢€;, respectively (see Fig. 1.18). Errors in different symbol transmissions
are independent.

Figure 1.18: Error probabilities in a binary communication channel.

(a) What is the probability that the kth symbol is received correctly?
(b) What is the probability that the string of symbols 1011 is received correctly?

(c) In an effort to improve reliability, each symbol is transmitted three times and
the received string is decoded by majority rule. In other words, a 0 (or 1) is
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transmitted as 000 (or 111, respectively), and it is decoded at the receiver as a 0
(or 1) if and only if the received three-symbol string contains at least two Os (or
1s, respectively). What is the probability that a 0 is correctly decoded?

(d) For what values of ¢ is there an improvement in the probability of correct de-
coding of a 0 when the scheme of part (¢) is used?

(e) Suppose that the scheme of part (c) is used. What is the probability that a
symbol was 0 given that the received string is 1017

Problem 32. The king's sibling. The king has only one sibling. What is the proba-
bility that the sibling is male? Assume that every birth results in a boy with probability
1/2, independent of other births. Be careful to state any additional assumptions you
have to make in order to arrive at an answer.

Problem 33. Using a biased coin to make an unbiased decision. Alice and Bob
want to choose between the opera and the movies by tossing a fair coin. Unfortunately.
the only available coin is biased (though the bias is not known exactly). How can they
use the biased coin to make a decision so that either option (opera or the movies) is
equally likely to be chosen?

Problem 34. An electrical system consists of identical comnponents. each of which
is operational with probability p, independent of other components. The components
are connected in three subsystems, as shown in Fig. 1.19. The system is operational
if there is a path that starts at point A. ends at point B. and consists of operational
components. What is the probability of this happening?

Figure 1.19: A system of identical components that cousists of the three sub-
systems 1. 2, and 3. The system is operational if there is a path that starts at
point A, ends at point B, and consists of operational components.

Problem 356. Reliability of a k-out-of-n system. A svstem consists of n identical
components, each of which is operational with probability p. independent of other
components. The system is operational if at least k out of the n components are
operational. What is the probability that the system is operational?

Problem 36. A power utility can supply electricity to a city from n different power
plants. Power plant 7 fails with probability p,, independent of the others.
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(a) Suppose that any one plant can produce enough electricity to supply the entire
city. What is the probability that the city will experience a black-out?

(b) Suppose that two power plants are necessary to keep the city from a black-out.
Find the probability that the city will experience a black-out.

Problem 37. A cellular phone system services a population of n, “voice users” (those
who occasionally need a voice connection) and nz “data users” (those who occasionally
need a data connection). We estimate that at a given time, each user will need to be
connected to the system with probability p; (for voice users) or p; (for data users),
independent of other users. The data rate for a voice user is r; bits/sec and for a data
user is r2 bits/sec. The cellular system has a total capacity of c bits/sec. What is the
probability that more users want to use the system than the system can accommodate?

Problem 38. The problem of points. Telis and Wendy play a round of golf (18
holes) for a $10 stake, and their probabilities of winning on any one hole are p and
1 — p, respectively, independent of their results in other holes. At the end of 10 holes,
with the score 4 to 6 in favor of Wendy, Telis receives an urgent call and has to report
back to work. They decide to split the stake in proportion to their probabilities of
winning had they completed the round, as follows. If pr and pw are the conditional
probabilities that Telis and Wendy, respectively, are ahead in the score after 18 holes
given the 4-6 score after 10 holes, then Telis should get a fraction pr/(pr + pw) of the
stake, and Wendy should get the remaining pw /(pr + pw). How much money should
Telis get? Note: This is an example of the, so-called, problem of points, which played
an important historical role in the development of probability theory. The problem
was posed by Chevalier de Méré in the 17th century to Pascal, who introduced the
idea that the stake of an interrupted game should be divided in proportion to the
players’ conditional probabilities of winning given the state of the game at the time of
interruption. Pascal worked out some special cases and through a correspondence with
Fermat, stimulated much thinking and several probability-related investigations.

Problem 39. A particular class has had a history of low attendance. The annoyed
professor decides that she will not lecture unless at least k of the n students enrolled
in the class are present. Each student will independently show up with probability
pg if the weather is good, and with probability p, if the weather is bad. Given the
probability of bad weather on a given day, obtain an expression for the probability that
the professor will teach her class on that day.

Problem 40. Consider a coin that comes up heads with probability p and tails with
probability 1 —p. Let g» be the probability that after n independent tosses, there have
been an even number of heads. Derive a recursion that relates ¢, to gn—1, and solve
this recursion to establish the formula

g = (1+(1-2p)")/2.

Problem 41. Consider a game show with an infinite pool of contestants, where
at each round 7, contestant ¢ obtains a number by spinning a continuously calibrated
wheel. The contestant with the smallest number thus far survives. Successive wheel
spins are independent and we assume that there are no ties. Let NV be the round at
which contestant 1 is eliminated. For any positive integer n, find P(N = n).
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Problem 42.* Gambler’s ruin. A gambler makes a sequence of independent bets.
In each bet, he wins $1 with probability p, and loses $1 with probability 1 — p. Initially,
the gambler has $k, and plays until he either accumulates $n or has no money left.
What is the probability that the gambler will end up with $n?

Solution. Let us denote by A the event that he ends up with $n, and by F' the event
that he wins the first bet. Denote also by wi the probability of event A, if he starts
with $k. We apply the total probability theorem to obtain

wp = P(A| F)P(F) + P(A| F*)P(F°) = pP(A| F) + qP(A| FS). 0<k<n,

where ¢ = 1 — p. By the independence of past and future bets, having won the first bet
is the same as if he were just starting now but with $(k+1), so that P(A| F) = wk41
and similarly P(A| F°) = wi-;. Thus, we have wy = pwi41 + qwi—1, which can be
written as

Wkt1 — Wk = T(Wk — Wk-1), 0<k<n,

where r = g/p. We will solve for wi in terms of p and ¢ using iteration, and the
boundary values wp = 0 and w, = 1.
We have wiy) — wx = 7*(w; — wp), and since wy = 0,

k k—1 k k
Wkl =Wk +T W1 = Wg—1+T w +rw =uw Frwr + -+ 7wy

The sum in the right-hand side can be calculated separately for the two cases where
r=1(orp=gq)andr #1 (or p# q). We have

1-7

1-r* .
’U.sz{ wiy, lfp#q
kw,. ifp=q.

Since w, = 1, we can solve for wy and therefore for wy:

T if p # q,
wy = 1

— if p=gq,

so that .

(1—-71 .

T fPFG
Wi = {

k .

o fr=e

Problem 43.* Let A and B be independent events. Use the definition of indepen-
dence to prove the following:

(a) The events A and B are independent.
(b) The events A° and B are independent.

Solution. (a) The event A is the union of the disjoint events AN B and AN B. Using
the additivity axiom and the independence of A and B, we obtain

P(A) = P(AN B) + P(AN B°) = P(A)P(B) + P(AN B°).
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It follows that
P(AN B°) =P(A)(1-P(B)) =P(A4)P(B°).
so A and B¢ are independent.
(b) Apply the result of part (a) twice: first on A and B. then on B and A.

Problem 44.* Let A. B. and C be independent events, with P(C) > 0. Prove that
A and B are conditionally independent given C.

Solution. We have
P(ANBNCQC)

P(C)

_ P(A)P(B)P(C)
- P(C)

— P(A)P(B)
=P(A|C)P(B|C),

P(ANB|C) =

so A and B are conditionally independent given C. In the preceding calculation, the
first equality uses the definition of conditional probabilities; the second uses the as-
sumed independence; the fourth uses the independence of A from C, and of B from C.

Problem 45.* Assume that the events A;, A2, A3, Ay are independent and that
P(A3z N As) > 0. Show that
P(A1U Az | Az N Ay) = P(A1 U Ag).

Solution. We have

P(A1 N AsN A1) P(A1)P(A3)P(Ay)

P(A1|A3N Ay) = P(AsNAy) P(A3)P(A4)

= P(4)).

We similarly obtain P(A2 | A3 N A4) = P(A2) and P(A1 N A2 | Az N Ay) = P(A; N A2),
and finally,

P(A1UA2|AsNAs) =P(A1| A3 NAs) + P(A2| AsNAg) —P(A1 N A2 | Az N Ay)
— P(A,) + P(42) — P(A; N A)

Problem 46.* Laplace’s rule of succession. Consider m + 1 boxes with the kth
box containing k red balls and m — k white balls, where k ranges from 0 to m. We
choose a box at random (all boxes are equally likely) and then choose a ball at random
from that box, n successive times (the ball drawn is replaced each time, and a new ball
is selected independently). Suppose a red ball was drawn each of the n times. What
is the probability that if we draw a ball one more time it will be red? Estimate this
probability for large m.

Solution. We want to find the conditional probability P(E | R.), where E is the event
of a red ball drawn at time n + 1, and R, is the event of a red ball drawn each of the n
preceding times. Intuitively, the consistent draw of a red ball indicates that a box with
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a high percentage of red balls was chosen, so we expect that P(E | R,) is closer to 1
than to 0. In fact, Laplace used this example to calculate the probability that the sun
will rise tomorrow given that it has risen for the preceding 5,000 years. (It is not clear
how serious Laplace was about this calculation, but the story is part of the folklore of
probability theory.)

We have
P(ENR,)

P(E'Rn)= P(Rn) )

and by using the total probability theorem, we obtain

m P 1 m k™
P(R,) = ZP(kth box chosen) (E) = Z (;) ’
k=0 k=0
1 m k n+1
P(Ean) =P(Ras1) = m_+1 2 (E) .

For large m, we can view P(R,) as a piecewise constant approximation to an integral:

1 ~—/k\" 1 m 1 m"t! 1
P(Rn) = —— (_) O S "dy = . ~ .
(Ra) m+1§ m (m+1)m"/0 T o (m+1m® n+1 n+1
Similarly,
1
P(ENR,) =P(R, N —,
(EN Rp) =P(Rn+1) —
so that )
n +
P(E|R,) =~ .
(B Rn) n+2

Thus, for large m, drawing a red ball one more time is almost certain when n is large.
Problem 47.* Binomial coefficient formula and the Pascal triangle.

(a) Use the definition of (:) as the number of distinct n-toss sequences with k
heads, to derive the recursion suggested by the so called Pascal triangle, given in
Fig. 1.20.

(b) Use the recursion derived in part (a) and induction, to establish the formula

n n!
(k) T K (n—k)

Solution. (a) Note that n-toss sequences that contain k heads (for 0 < k < n) can be
obtained in two ways:

(1) By starting with an (n — 1)-toss sequence that contains k heads and adding a tail
at the end. There are (";l different sequences of this type.

(2) By starting with an (n — 1)-toss sequence that contains k — 1 heads and adding

a head at the end. There are (::;) different sequences of this type.
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Figure 1.20: Sequential calculation method of the binomial coefficients using the
Pascal triangle. Each term (’;) in the triangular array on the left is computed
and placed in the triangular array on the right by adding its two neighbors in the
row above it (except for the boundary terms with k£ = 0 or k = n, which are equal
to 1).

Thus,

n~1 n-—1 _
(n>: (k-1>+( K >> ifk=12,...,n~-1.
k

1. if k =0,n.

This is the formula corresponding to the Pascal triangle calculation, given in Fig. 1.20.

(b) We now use the recursion from part (a), to demonstrate the formula

ny _ n!
k)] k'(n-k)
1

by induction on n. Indeed, we have from the definition ((1)) = (1) =1,soforn =1 the

above formula is seen to hold as long as we use the convention 0! = 1. If the formula

holds for each index up to n — 1, we have for k =1,2,..., n—1,
ny (n-1 n n—1
k)] \k-1 k
_ (n—=1)! (n-1)!
S k=D!n—-1-k+1)!  kl(n-1-k)
_k n! +n—k_ n!
T n k'(n-—k) n k' (n — k)!
n!
Tk (n—-k)!’

and the induction is complete.

Problem 48.* The Borel-Cantelli lemma. Consider an infinite sequence of trials.
The probability of success at the ith trial is some positive number p;. Let N be the
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event that there is no success, and let I be the event that there is an infinite number
of successes.

(a) Assume that the trials are independent and that Z:l p. = oo. Show that
P(N)=0and P(I) = 1.

(b) Assume that ) >~ p, < co. Show that P(I) = 0.

Solution. (a) The event N is a subset of the event that there were no successes in the
first n trials, so that

P(N) < [J(1-po).

i=1

Taking logarithms,

log P(N) < ) log(1-p) <) (-pi).

=1

Taking the limit as n tends to infinity, we obtain log P(N) = —o0. or P(N) = 0.

Let now L, be the event that there is a finite number of successes and that the
last success occurs at the nth trial. We use the already established result P(N) = 0,
and apply it to the sequence of trials after trial n, to obtain P(L,) = 0. The event I¢
(finite number of successes) is the union of the disjoint events L,, n > 1. and N, so
that

P(I°)=P(N)+ Y _P(La) =0,

n=1
and P(I) = 1.

(b) Let S; be the event that the ith trial is a success. Fix some number n and for every
1 > n, let F; be the event that the first success after time n occurs at time ¢. Note
that F; C S;. Finally, let A, be the event that there is at least one success after time
n. Note that I C A,, because an infinite number of successes implies that there are
successes subsequent to time n. Furthermore, the event A, is the union of the disjoint
events F;, ¢ > n. Therefore,

P(I)gP(An)=P< U Fi) = > PFE)S ) P@E)= ) p
i=n+1 i=n+1 i=n+1 1=n+1

We take the limit of both sides as n — oo. Because of the assumption Zf:l pr < 00,
the right-hand side converges to zero. This implies that P(I) = 0.

SECTION 1.6. Counting

Problem 49. De Méré’s puzzle. A six-sided die is rolled three times independently.
Which is more likely: a sum of 11 or a sum of 12?7 (This question was posed by the
French nobleman de Méré to his friend Pascal in the 17th century.)

Problem 50. The birthday problem. Consider n people who are attending a
party. We assume that every person has an equal probability of being born on any day
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during the year. independent of everyone else, and ignore the additional complication
presented by leap years (i.e., assume that nobody is born on February 29). What is
the probability that each person has a distinct birthday?

Problem 51. An urn contains m red and n white balls.

(a) We draw two balls randomly and simultaneously. Describe the sample space and
calculate the probability that the selected balls are of different color, by using
two approaches: a counting approach based on the discrete uniform law, and a
sequential approach based on the multiplication rule.

(b) We roll a fair 3-sided die whose faces are labeled 1,2,3, and if k comes up. we
remove k balls from the urn at random and put them aside. Describe the sample
space and calculate the probability that all of the balls drawn are red. using a
divide-and-conquer approach and the total probability theorem.

Problem 52. We deal from a well-shufled 52-card deck. Calculate the probability
that the 13th card is the first king to be dealt.

Problem 53. Ninety students, including Joe and Jane, are to be split into three
classes of equal size, and this is to be done at random. What is the probability that
Joe and Jane end up in the same class?

Problem 54. Twenty distinct cars park in the same parking lot every day. Ten of
these cars are US-made. while the other ten are foreign-made. The parking lot has
exactly twenty spaces. all in a row. so the cars park side by side. However. the drivers
have varying schedules. so the position any car might take on a certain day is random.

(a) In how many different ways can the cars line up?

(b) What is the probability that on a given day, the cars will park in such a way
that they alternate (no two US-made are adjacent and no two foreign-made are
adjacent)?

Problem 55. Eight rooks are placed in distinct squares of an 8 x 8 chessboard, with
all possible placements being equally likely. Find the probability that all the rooks are
safe from one another, i.e.. that there is no row or column with more than one rook.

Problem 56. An academic department offers 8 lower level courses: {Li,L2,....Lg}
and 10 higher level courses: {H,.Ha..... Hio}. A valid curriculum consists of 4 lower
level courses. and 3 higher level courses.

(a) How many different curricula are possible?

(b) Suppose that {H,....,Hs} have L, as a prerequisite, and {Hs,... Hi0} have Lo
and L3 as prerequisites. i.e.. any curricula which involve, say, one of {H1, ..., Hs}
must also include L;. How many different curricula are there?

Problem 57. How many 6-word sentences can be made using each of the 26 letters
of the alphabet exactly once? A word is defined as a nonempty (possibly jibberish)
sequence of letters.
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Problem 58. We draw the top 7 cards from a well-shufled standard 52-card deck.
Find the probability that:

(a) The 7 cards include exactly 3 aces.
(b) The 7 cards include exactly 2 kings.

(c) The probability that the 7 cards include exactly 3 aces. or exactly 2 kings, or
both.

Problem 59. A parking lot contains 100 cars, k of which happen to be lemons. We
select m of these cars at random and take them for a test drive. Find the probability
that n of the cars tested turn out to be lemons.

Problem 60. A well-shuffled 52-card deck is dealt to 4 players. Find the probability
that each of the players gets an ace.

Problem 61.* Hypergeometric probabilities. An urn contains n balls, out of
which m are red. We select k of the balls at random. without replacement (i.e., selected
balls are not put back into the urn before the next selection). What is the probability
that 7 of the selected balls are red?

Solution. The sample space consists of the (:) different ways that we can select k out
of the available balls. For the event of interest to occur. we have to select 7z out of the
m red balls, which can be done in (’:‘) ways, and also select k —i out of the n —m balls

n—-m

P ) ways. Therefore, the desired probability
(1) (=7)
1 k-1
6
k
for i > 0 satisfying i < m, ¢ < k, and k — i < n — m. For all other 7, the probability is
zero.

that are not red, which can be done in (
is

Problem 62.* Correcting the number of permutations for indistinguishable
objects. When permuting n objects, some of which are indistinguishable, different
permutations may lead to indistinguishable object sequences, so the number of distin-
guishable object sequences is less than n!. For example, there are six permutations of
the letters A, B, and C:

ABC. ACB, BAC, BCA, CAB, CBA,

but only three distinguishable sequences that can be formed using the letters A, D,

and D:
ADD, DAD. DDA.

(a) Suppose that k& out of the n objects are indistinguishable. Show that the number
of distinguishable object sequences is n!/k!.

(b) Suppose that we have r types of indistinguishable objects, and for each i, k;
objects of type i. Show that the number of distinguishable object sequences is

n!

ky'ko!- - ket
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Solution. (a) Each one of the n! permutations corresponds to k! duplicates which are
obtained by permuting the k indistinguishable objects. Thus, the n! permutations can
be grouped into n!/k! groups of k! indistinguishable permutations that result in the
same object sequence. Therefore, the number of distinguishable object sequences is
n!/k!. For example, the three letters A, D, and D give the 3! = 6 permutations

ADD, ADD, DAD, DDA, DAD, DDA,

obtained by replacing B and C by D in the permutations of A, B, and C given earlier.
However, these 6 permutations can be divided into the n!/k! = 3!/2! = 3 groups

{ADD, ADD}, {DAD,DAD}, {DDA,DDA},

each having k! = 2! = 2 indistinguishable permutations.

(b) One solution is to extend the argument in (a) above: for each object type i, there are
k;! indistinguishable permutations of the k; objects. Hence, each permutation belongs
to a group of k1! k3! - - k,! indistinguishable permutations, all of which yield the same
object sequence.

An alternative argument goes as follows. Choosing a distinguishable object se-
quence is the same as starting with n slots and for each ¢, choosing the k; slots to be
occupied by objects of type i. This is the same as partitioning the set {1,...,n} into
groups of size ki,..., kr, and the number of such partitions is given by the multinomial
coefficient.



