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PROBLEMS

SECTION 2.2. Probability Mass Functions

Problem 1. The MIT soccer team has 2 games scheduled for one weekend. It has
a 0.4 probability of not losing the first game. and a 0.7 probability of not losing the
second game, independent of the first. If it does not lose a particular game, the team
is equally likely to win or tie. independent of what happens in the other game. The
MIT team will receive 2 points for a win, 1 for a tie. and O for a loss. Find the PMF
of the number of points that the team earns over the weekend.

Problem 2. You go to a party with 500 guests. What is the probability that
exactly one other guest has the same birthday as you? Calculate this exactly and
also approximately by using the Poisson PMF. (For simplicity. exclude birthdays on
February 29.)

Problem 3. Fischer and Spassky play a chess match in which the first player to win
a game wins the match. After 10 successive draws. the match is declared drawn. Each
game is won by Fischer with probability 0.4. is won by Spassky with probability 0.3.
and is a draw with probability 0.3. independent of previous games.

(a) What is the probability that Fischer wins the match?
(b) What is the PMF of the duration of the match?

Problem 4. An internet service provider uses 50 modems to serve the needs of 1000
customers. It is estimated that at a given time. each customer will need a connection
with probability 0.01, independent of the other customers.

(a) What is the PMF of the number of modems in use at the given time?

(b) Repeat part (a) by approximating the PMF of the number of customers that
need a connection with a Poisson PMF.

(c) What is the probability that there are more customers needing a connection than
there are modems? Provide an exact. as well as an approximate formula based
on the Poisson approximation of part (b).

Problem 5. A packet communication system consists of a buffer that stores packets
from some source, and a communication line that retrieves packets from the buffer and
transmits them to a receiver. The system operates in time-slot pairs. In the first slot,
the system stores a number of packets that are generated by the source according to
a Poisson PMF with parameter A; however, the maximum number of packets that can
be stored is a given integer b, and packets arriving to a full buffer are discarded. In the
second slot, the system transmits either all the stored packets or c packets (whichever
is less). Here, c is a given integer with 0 < ¢ < b.



120 Discrete Random Variables Chap. 2

(a) Assuming that at the beginning of the first slot the buffer is empty, find the PMF
of the number of packets stored at the end of the first slot and at the end of the
second slot.

(b) What is the probability that some packets get discarded during the first slot?

Problem 6. The Celtics and the Lakers are set to play a playoff series of n basketball
games, where n is odd. The Celtics have a probability p of winning any one game,
independent of other games.

(a) Find the values of p for which n = 5 is better for the Celtics than n = 3.

(b) Generalize part (a), i.e., for any k > 0, find the values for p for which n = 2k +1
is better for the Celtics than n = 2k — 1.

Problem 7. You just rented a large house and the realtor gave you 5 keys, one for
each of the 5 doors of the house. Unfortunately, all keys look identical. so to open the
front door, you try them at random.

(a) Find the PMF of the number of trials you will need to open the door, under the
following alternative assumptions: (1) after an unsuccessful trial. you mark the
corresponding key. so that you never try it again. and (2) at each trial you are
equally likely to choose any key.

(b) Repeat part (a) for the case where the realtor gave you an extra duplicate key
for each of the 5 doors.

Problem 8. Recursive computation of the binomial PMF. Let X be a binomial
random variable with parameters n and p. Show that its PMF can be computed by
starting with px(0) = (1 — p)™. and then using the recursive formula

_L.n—k
px(k+1)—1_p k+1

-px (k), k=01....,n-1.

Problem 9. Form of the binomial PMF. Consider a binomial random variable
X with parameters n and p. Let £* be the largest integer that is less than or equal
to (n + 1)p. Show that the PMF px (k) is monotonically nondecreasing with k in the
range from O to k*. and is monotonically decreasing with k for & > k*.

Problem 10. Form of the Poisson PMF. Let X be a Poisson random variable
with parameter A. Show that the PMF px(k) increases monotonically with k up to
the point where k reaches the largest integer not exceeding A, and after that point
decreases monotonically with k.

Problem 11.* The matchbox problem - inspired by Banach’s smoking
habits. A smoker mathematician carries one matchbox in his right pocket and one in
his left pocket. Each time he wants to light a cigarette, he selects a matchbox from
either pocket with probability p = 1/2, independent of earlier selections. The two
matchboxes have initially n matches each. What is the PMF of the number of remain-
ing matches at the moment when the mathematician reaches for a match and discovers
that the corresponding matchbox is empty? How can we generalize to the case where
the probabilities of a left and a right pocket selection are p and 1 — p, respectively?
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Solution. Let X be the number of matches that remain when a matchbox is found
empty. For k = 0,1,....n, let Ly (or Rx) be the event that an empty box is first
discovered in the left (respectively. right) pocket while the number of matches in the
right (respectively, left) pocket is k at that time. The PMF of X is

px (k) = P(Lk) + P(Rx). k=0,1,...,n.

Viewing a left and a right pocket selection as a “success” and a “failure,” respectively,
P(Lk) is the probability that there are n successes in the first 2n — k trials, and trial
2n — k + 1 is a success. or

1/2n—k\ /1\%2"k
P(Lk)_a( n )(5) . k=0,1,....n.

By symmetry. P(Lix) = P(Rk). so

px (k) = P(Lx) + P(Rx) = (2"71‘ ’“) (-;-)2"_k. k=0.1,....n.

In the more general case, where the probabilities of a left and a right pocket
selection are p and 1 — p, using a similar reasoning. we obtain

P(Lk)=P(2nn_ k)P"(l—p)"_k, k=0.1,....n.

and
2n —k n-— n
P(Rk)=(1—p)("n )p *1-p)". k=0,1,...,n.

which yields
px (k) = P(Lk) + P(Rx)

_ (Qn - k) (pn+l(1 _p)n—k +p"_k(1 —p)n+l). k=0.1,....n.

n

Problem 12.* Justification of the Poisson approximation property. Con-
sider the PMF of a binomial random variable with parameters n and p. Show that
asymptotically, as

n — 0o, p — 0.

while np is fixed at a given value A, this PMF approaches the PMF of a Poisson random
variable with parameter \.

Solution. Using the equation A = np, write the binomial PMF as

px(k) = g~

n

_ n(n—l)--r-lkfn—kﬂ) _ ,}\c‘: ' (1_ ,\)"—k'
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Fix k and let n — oo. We have, for 7 =1,....k,

.’n;kﬂ_)l_ (1__.5) _;1. (1_é) _>e_A.

n

Thus, for each fixed k, as n — 0o we obtain

SECTION 2.3. Functions of Random Variables

Problem 13. A family has 5 natural children and has adopted 2 girls. Each natural
child has equal probability of being a girl or a boy, independent of the other children.
Find the PMF of the number of girls out of the 7 children.

Problem 14. Let X be a random variable that takes values from 0 to 9 with equal
probability 1/10.

(a) Find the PMF of the random variable Y = X mod(3).

(b) Find the PMF of the random variable Y = 5 mod(X + 1).
Problem 15. Let K be arandom variable that takes, with equal probability 1/(2n+1),

the integer values in the interval [-n,n]. Find the PMF of the random variable Y =
In X. where X = a!%!. and a is a positive number.

SECTION 2.4. Expectation, Mean, and Variance

Problem 16. Let X be a random variable with PMF

px(z) = :1:'-’/a, ifr=-3,-2,-1,0,1,2,3,
0, otherwise.

(a) Find a and E[X].

(c) Using the result from part (b), find the variance of X.

)
(b) What is the PMF of the random variable Z = (X - E[X])2 ?
)
(d) Find the variance of X using the formula var(X) =} _ (:z - E[X]) 2px (z).

Problem 17. A city’s temperature is modeled as a random variable with mean and
standard deviation both equal to 10 degrees Celsius. A day is described as “normal” if
the temperature during that day ranges within one standard deviation from the mean.
What would be the temperature range for a normal day if temperature were expressed
in degrees Fahrenheit?

Problem 18. Let a and b be positive integers with a < b, and let X be a random
variable that takes as values, with equal probability, the powers of 2 in the interval
[2%,2%]. Find the expected value and the variance of X.
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Problem 19. A prize is randomly placed in one of ten boxes, numbered from 1 to 10.
You search for the prize by asking yes-no questions. Find the expected number of
questions until you are sure about the location of the prize, under each of the following
strategies.

a) An enumeration strategy: you ask questions of the form “is it in box k?7”.
gy: Yy q

(b) A bisection strategy: you eliminate as close to half of the remaining boxes as
possible by asking questions of the form “is it in a box numbered less than or
equal to k7”.

Solution. We will find the expected gain for each strategy, by computing the expected
number of questions until we find the prize.

(a) With this strategy, the probability 1/10 of finding the location of the prize with i
questions, where ¢ = 1,...,10, is 1/10. Therefore, the expected number of questions is

10
1 E 1
— 1= —.55=25.5.
10 — 10

(b) It can be checked that for 4 of the 10 possible box numbers, exactly 4 questions
will be needed, whereas for 6 of the 10 numbers, 3 questions will be needed. Therefore,
with this strategy, the expected number of questions is

4 6

Problem 20. As an advertising campaign, a chocolate factory places golden tickets
in some of its candy bars, with the promise that a golden ticket is worth a trip through
the chocolate factory, and all the chocolate you can eat for life. If the probability of
finding a golden ticket is p, find the mean and the variance of the number of candy
bars you need to eat to find a ticket.

Problem 21. St. Petersburg paradox. You toss independently a fair coin and you
count the number of tosses until the first tail appears. If this number is n, you receive
2" dollars. What is the expected amount that you will receive? How much would you
be willing to pay to play this game?

Problem 22. Two coins are simultaneously tossed until one of them comes up a head
and the other a tail. The first coin comes up a head with probability p and the second
with probability q. All tosses are assumed independent.

(a) Find the PMF, the expected value, and the variance of the number of tosses.

(b) What is the probability that the last toss of the first coin is a head?

Problem 23.

(a) A fair coin is tossed repeatedly and independently until two consecutive heads
or two consecutive tails appear. Find the PMF, the expected value, and the
variance of the number of tosses.
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(b) Assume now that the coin is tossed until we obtain a tail that is immediately
preceded by a head. Find the PMF and the expected value of the number of
tosses.

SECTION 2.5. Joint PMF's of Multiple Random Variables

Problem 24. A stock market trader buys 100 shares of stock A and 200 shares of
stock B. Let X and Y be the price changes of A and B. respectively. over a certain time
period. and assume that the joint PMF of X and Y is uniform over the set of integers
x and y satisfying

—2<x <4, -1<y—-z<1.

(a) Find the marginal PMFs and the means of X and Y.
(b) Find the mean of the trader’s profit.

Problem 25. A class of n students takes a test consisting of m questions. Suppose
that student ¢ submitted answers to the first m, questions.

(a) The grader randomly picks one answer, call it (I, J), where I is the student ID
number (taking values 1,...,n) and J is the question number (taking values
1....,m). Assume that all answers are equally likely to be picked. Calculate the
joint and the marginal PMFs of I and J.

(b) Assume that an answer to question j. if submitted by student i, is correct with
probability p,;. Each answer gets a points if it is correct and gets b points
otherwise. Calculate the expected value of the score of student i.

Problem 26. PMF of the minimum of several random variables. On a
given day. your golf score takes values from the range 101 to 110. with probability 0.1,
independent of other days. Determined to improve your score, you decide to play on
three different days and declare as your score the minimum X of the scores X, X2,
and X3 on the different days.

(a) Calculate the PMF of X.

(b) By how much has your expected score improved as a result of playing on three
days?

Problem 27.* The multinomial distribution. A die with r faces, numbered
1,....7.is rolled a fixed number of times n. The probability that the ith face comes up
on any one roll is denoted p,, and the results of different rolls are assumed independent.
Let X, be the number of times that the ith face comes up.

(a) Find the joint PMF px, ... .x,(k1,....kr).
(b) Find the expected value and variance of X;.
(c) Find E[X, X,] for i # j.

Solution. (a) The probability of a sequence of rolls where, for ¢ = 1,...,r, face ¢ comes
up k; times is pfl ... pkr_ Every such sequence determines a partition of the set of n
rolls into 7 subsets with the ith subset having cardinality k; (this is the set of rolls



Problems 125

for which the ith face came up). The number of such partitions is the multinomial

coefficient (cf. Section 1.6)
n _ n!
kio....kr)  kileokel

and otherwise, px;...xr(k1,..., k) = 0.

(b) The random variable X, is binomial with parameters n and p,. Therefore, E[X;] =
np;, and var(X;) = np;(1 — p;).

(c) Suppose that i # j, and let Y; i (or Yji) be the Bernoulli random variable that
takes the value 1 if face ¢ (respectively, j) comes up on the kth roll. and the value 0
otherwise. Note that Y; xY; x = 0, and that for [ % k. Y.« and Y, are independent, so
that E[Y;.xYj:] = pip;. Therefore,

EX.X;])=E[(Yi1+- 4+ Yin)(Yoa +- -+ Y).0)]
n(n — 1)E[Yi Y; 2]
= n(n - 1)pip;.

Problem 28.* The quiz problem. Consider a quiz contest where a person is given
a list of n questions and can answer these questions in any order he or she chooses.
Question ¢ will be answered correctly with probability p:. and the person will then
receive a reward v;. At the first incorrect answer, the quiz terminates and the person
is allowed to keep his or her previous rewards. The problem is to choose the ordering
of questions so as to maximize the expected value of the total reward obtained. Show
that it is optimal to answer questions in a nonincreasing order of p;v; /(1 = pi)-

Solution. We will use a so-called interchange argument, which is often useful in
sequencing problems. Let ¢ and j be the kth and (k + 1)st questions in an optimally
ordered list

L={(31,...,tk1,8 7y tk42,-«s2n).

Consider the list
L' = (Z1y. -2 Tke1sJy Lo lht2y v s%n)

obtained from L by interchanging the order of questions ¢ and j. We compute the
expected values of the rewards of L and L’, and note that since L is optimally ordered,

we have
E[reward of L] > E[reward of L'].

Define the weight of question i to be

Divi

w(i) = I—pr
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We will show that any permutation of the questions in a nonincreasing order of weights
maximizes the expected reward.

If L = (i1,...,in) is a permutation of the questions, define L'*) to be the permu-
tation obtained from L by interchanging questions # and ¢x41. Let us first compute
the difference between the expected reward of L and that of L(¥). We have

E[reward of L] = pi; vi; + PiyPigiy + - + Diy == PinVin,

and
E[reward of L(k)] = Pi;Vi; + PiyPiyVip + -+ Piy Py Vig_y
t Piy  Pig 1 Pig gy Vigyy T Piy o Pr_ Pig g Prg U
tPiy  PigygVigig + 0+ Piy  PipVip.
Therefore,

E[reward of L(k)] — E[reward of L] = pi, -+ - pi _; (Pijeyy Vig g1 + Pigyr Pir Vik
— Piy Uy = PigPij 41 Vigyy)

=piy iy (1 = pi ) (1 = Piy4y) (wlins1) — w(i)).

Now, let us go back to our problem. Consider any permutation L of the questions.
If w(ix) < w(ik+1) for some k, it follows from the above equation that the permutation
L‘*) has an expected reward larger than that of L. So, an optimal permutation of the
questions must be in a nonincreasing order of weights.

Let us finally show that any two such permutations have equal expected rewards.
Assume that L is such a permutation and say that w(ix) = w(ix+1) for some k. We
know that interchanging ix and ix+1 preserves the expected reward. So, the expected
reward of any permutation L’ in a non-increasing order of weights is equal to that of
L, because L' can be obtained from L by repeatedly interchanging adjacent questions
having equal weights.

Problem 29.* The inclusion-exclusion formula. Let A, A,,..., A, be events.
Let S1 = {i|1 < i< n}, S2 = {(i1,i2) |1 £ 4 < i2 < n}, and more generally, let Sn
be the set of all m-tuples (z1,...,im) of indices that satisfy 1 < i) < i < -+ < i, <.
Show that
P(Uic1dk) = D _P(A)— Y P(AyNAy)
€S (i1.i9)€SH

+ > P(Ag NAp NAg) ~ -+ (=1)" P (i Ax) .

(21.42,i3)€S3

Hint: Let X; be a binary random variable which is equal to 1 when A; occurs, and
equal to O otherwise. Relate the event of interest to the random variable (1 — X1)(1 —
X2)--- (1= X,).

Solution. Let us express the event B = Up_,Ax in terms of the random variables
X1,...,Xn. The event B occurs when all of the random variables X, ..., X, are zero,
which happens when the random variable Y = (1-X;)(1-X32) --- (1—X4) is equal to 1.
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Note that Y can only take values in the set {0, 1}, so that P(B°) = P(Y = 1) = E[Y].
Therefore,

P(B)=1-E[(1-X1)(1 - X2) - (1 — Xn)]

=E[X;++ X -E| Y XyXy| 4o+ (-)"TEX - Xa).
(11,i2)€Sy

We note that
E[Xi] = P(A)), E[X:, X.,] = P(4i, NAy),
E[XiIXiQXi;;] = P(Ail n A12 N Ai3)7 E[X1X2 v Xn] = P(m;::lAk)a

etc., from which the desired formula follows.

Problem 30.* Alvin’s database of friends contains n entries, but due to a software
glitch, the addresses correspond to the names in a totally random fashion. Alvin writes
a holiday card to each of his friends and sends it to the (software-corrupted) address.
What is the probability that at least one of his friends will get the correct card? Hint:
Use the inclusion-exclusion formula.

Solution. Let A, be the event that the kth card is sent to the correct address. We
have for any k, j, i,

1 (n=1)
P(Ak)—n— n| L]
1 1 (n-2)!
P(Ak N 4;) = P(A)P(4; | Ak) = — - —— = ~—
1 1 1 (n-=3)
A i) =—" : ’
P(AenA4,NA) =~ =5 ——5 =0
etc., and 1
P(Nk=14k) = l

Applying the inclusion-exclusion formula,
P(Uisid) = ) P(A)— > P(A; NAy)
i€S) (11,i2)€S2
+ Z P(Ai; N Ay, NAig) =+ (=1)"'P (Nf_; Ax)
(i1+i9.i3)€S3

we obtain the desired probability

Pt = ([ - (5) O () B g

_ 1 1 n-—1
=l-g+g =+ (=)

When n is large, this probability can be approximated by 1 —e™?.
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SECTION 2.6. Conditioning

Problem 31. Consider four independent rolls of a 6-sided die. Let X be the number
of 1s and let Y be the number of 2s obtained. What is the joint PMF of X and Y?

Problem 32. D. Bernoulli’s problem of joint lives. Consider 2m persons
forming m couples who live together at a given time. Suppose that at some later time,
the probability of each person being alive is p, independent of other persons. At that
later time. let A be the number of persons that are alive and let S be the number of
couples in which both partners are alive. For any survivor number a, find E[S | A = a].

Problem 33.* A coin that has probability of heads equal to p is tossed successively
and independently until a head comes twice in a row or a tail comes twice in a row.
Find the expected value of the number of tosses.

Solution. One possibility here is to calculate the PMF of X, the number of tosses
until the game is over, and use it to compute E[X]. However, with an unfair coin, this
turns out to be cumbersome. so we argue by using the total expectation theorem and
a suitable partition of the sample space. Let Hy (or Tx) be the event that a head (or a
tail, respectively) comes at the kth toss. and let p (respectively, q) be the probability
of Hj (respectively, Tx). Since H; and T: form a partition of the sample space, and
P(H,) = p and P(T1) = ¢, we have

E(X] = pE[X | H1] + qE[X | Th].
Using again the total expectation theorem, we have
E[X |H:) =pE[X |Hi N H) +qE[X |Hi NT3) = 2p+ q(l + E[X| Tl]),

where we have used the fact
E[X|HiNH;] =2

(since the game ends after two successive heads), and
E(X |H,NT2] =1+ E[X |Ti]

(since if the game is not over. only the last toss matters in determining the number of
additional tosses up to termination). Similarly, we obtain

EX|T] = 2q+p(1 + E[X|H1])

Combining the above two relations. collecting terms, and using the fact p+ ¢ =1, we
obtain after some calculation

2+ p?
E(X|Th] = ,
[X | Th] T pg
and similarly
2+ ¢°
E[X |Hi] = 2

1-pq’
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Thus,
2 + g2 2
+q +p

and finally, using the fact p+ ¢ =1,

2+ pq
1—-pq

E[X] =

In the case of a fair coin (p = ¢ = 1/2), we obtain E[X] = 3. It can also be verified
that 2 < E[X] < 3 for all values of p.

Problem 34.* A spider and a fly move along a straight line. At each second, the fly
moves a unit step to the right or to the left with equal probability p, and stays where
it is with probability 1 —2p. The spider always takes a unit step in the direction of the
fly. The spider and the fly start D units apart, where D is a random variable taking
positive integer values with a given PMF. If the spider lands on top of the fly, it’s the
end. What is the expected value of the time it takes for this to happen?

Solution. Let T be the time at which the spider lands on top of the fly. We define
Aq: the event that initially the spider and the fly are d units apart.
Ba: the event that after one second the spider and the fly are d units apart.

Our approach will be to first apply the (conditional version of the) total expectation
theorem to compute E[T | A1], then use the result to compute E[T | A2]. and similarly
compute sequentially E[T'| A4] for all relevant values of d. We will then apply the
(unconditional version of the) total expectation theorem to compute E[T].

We have

Ag=(AaNBy)U(AaNBa_1) U (Ag N Ba_2), ifd>1.

This is because if the spider and the fly are at a distance d > 1 apart, then one second
later their distance will be d (if the fly moves away from the spider) or d — 1 (if the fly
does not move) or d — 2 (if the fly moves towards the spider). We also have, for the
case where the spider and the fly start one unit apart,

A = (Al N B]) U (A] n Bo)
Using the total expectation theorem. we obtain

E[T | Ad] = P(Bd | Ad)E[T| AgN Bd]
+ P(Bd-1| Ad)E[T | Aa N Ba-1]
+ P(Ba-2| A4)E[T | Ag N By—_2], if d>1,

and
E[T|A)=P(B1|A)E[T|AiNB1|+P(Bo| A\)E[T|A1NBo|, ifd=1.
It can be seen based on the problem data that

P(B1|A1)=2p, P(Bo|A1)=1-2p,
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E[T| A1 N B =1+ E[T| Ai], E[T| A1 N Bo] =1,

so by applying the formula for the case d = 1, we obtain
E[T| Ai] = 2p(1 + E[T| A1) + (1 - 2p),

or
1

1-2p
By applying the formula with d = 2, we obtain

E[T| A =

E[TlAz] = pE[T|A2 M Bz] + (1 - 2p)E[T| AN Bl] +pE[T|A2 n Bo]

We have
E[T|A2N By] =1,

E[T|A2NBy] =1+ E[T| 4],
E[T| A2 N B2] = 1+ E[T| Az],

so by substituting these relations in the expression for E[T | A2], we obtain

E[T| A2) = p(1 + E[T| A2]) + (1 - 2p) (1 + E[T | Ai]) +p

=p(1+ E[T| A2]) + (1 - 2p) (1+ 1_12p) +p.

This equation yields after some calculation

2

Generalizing. we obtain for d > 2,
E[T|Ad = p(1 + E[T| Ad]) + (1 = 2p)(1 + E[T | Aa_1]) + p(1 + E[T | Ag_2]).

Thus, E[T'| A4] can be generated recursively for any initial distance d, using as initial
conditions the values of E[T'| A;] and E[T | A2] obtained earlier.

Finally, the expected value of T can be obtained using the given PMF for the
initial distance D and the total expectation theorem:

E[T| = po(d)E[T | Ad]
d

Problem 35.* Verify the expected value rule
E[g(X,Y)] =) ) gz v)px.y(z.1),
r oy

using the expected value rule for a function of a single random variable. Then, use the
rule for the special case of a linear function, to verify the formula

ElaX + bY] = aE[X] + bE[Y],
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where a and b are given scalars.

Solution. We use the total expectation theorem to reduce the problem to the case of
a single random variable. In particular, we have

E[g(X,Y)] =) pr(¥)E[g(X,Y)|Y =y]

y

= pr(WE[9(X,9)|Y =]

= Zpy(y) Zg(w, y)pX|Y(:r | y)

- Z Z 9(z,y)px.y(z,y),

as desired. Note that the third equality above used the expected value rule for the
function g(X,y) of a single random variable X.
For the linear special case, the expected value rule gives

ElaX +bY] =) > (az +by)px.v(z,v)

x Yy
= aZ:BZPx,Y(x, y) + beZPx\Y(x’ y)
x Yy Yy T

= az:cpx(a:) + bePY(y)

= aE[X] + bE[Y].

Problem 36.* The multiplication rule for conditional PMFs. Let X, Y, and
Z be random variables.

(a) Show that
px.v,z(z,¥, z) = px (Z)py|x (¥ | T)PZ1Xx, v (2| T, Y).

(b) How can we interpret this formula as a special case of the multiplication rule
given in Section 1.37

(c) Generalize to the case of more than three random variables.

Solution. (a) We have
pxv.z(z,y,z) =P(X =z,Y =y, Z = 2)
=P(X=z)P(Y=yZ=z|X=1)
=PX=z2)PY=y|X=z)P(Z=z2|X=z1,Y=y)
= px(2)py x (¥ 2)pz1x.¥ (2] T, Y).
(b) The formula can be written as

PX=z,Y=y2=2)=PX=z)P(Y=y|X=2)P(Z=z2|X=1zY =y),
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which is a special case of the multiplication rule.

(c) The generalization is

Pxy...Xn(Z1,...,Zn)

=PXx;y (wl)p.\’2|X1 (:l‘g | .'1,'1) U PXpl Xyl Xn-1 (:En | Tiy..- ’:En—l)-

Problem 37.* Splitting a Poisson random variable. A transmitter sends out
either a 1 with probability p, or a 0 with probability 1 — p. independent of earlier
transmissions. If the number of transmissions within a given time interval has a Poisson
PMF with parameter A, show that the number of 1s transmitted in that same time
interval has a Poisson PMF with parameter pA.

Solution. Let X and Y be the numbers of 1s and Os transmitted. respectively. Let
Z = X + Y be the total number of symbols transmitted. We have

PX=nY=m=PX=nY=m|Z=n+m)P(Z=n+m)
n+m\ , m eI
_( n )p (1=p) S (n+m)!

m

e—,\p()‘p)n . e~21-p) (A(l —p))
n! m!

Thus.
P(X=n)=) P(X=nY=m)
=0

n!

_ G_A”(/\P)"e—A(l—p) i (A —p))
1
m=0 m:
e *?(\p)" o= M1=p) A(1-P)
n! i
e **(\p)"
n! )

so that X is Poisson with parameter Ap.

SECTION 2.7. Independence

Problem 38. Alice passes through four traffic lights on her way to work, and each
light is equally likely to be green or red. independent of the others.

(a) What is the PMF, the mean, and the variance of the number of red lights that
Alice encounters?

(b) Suppose that each red light delays Alice by exactly two minutes. What is the

variance of Alice’'s commuting time?

Problem 39. Each morning, Hungry Harry eats some eggs. On any given morning,.
the number of eggs he eats is equally likely to be 1. 2, 3. 4, 5, or 6, independent of
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what he has done in the past. Let X be the number of eggs that Harry eats in 10 days.
Find the mean and variance of X.

Problem 40. A particular professor is known for his arbitrary grading policies. Each
paper receives a grade from the set {A, A—, B+. B, B—,C+}, with equal probability,
independent of other papers. How many papers do you expect to hand in before you
receive each possible grade at least once?

Problem 41. You drive to work 5 days a week for a full year (50 weeks), and with
probability p = 0.02 you get a traffic ticket on any given day, independent of other
days. Let X be the total number of tickets you get in the year.

(a) What is the probability that the number of tickets you get is exactly equal to the
expected value of X?

(b) Calculate approximately the probability in (a) using a Poisson approximation.

(c) Any one of the tickets is $10 or $20 or $50 with respective probabilities 0.5, 0.3,
and 0.2, and independent of other tickets. Find the mean and the variance of the
amount of money you pay in traffic tickets during the year.

(d) Suppose you don’t know the probability p of getting a ticket. but you got 5 tickets
during the year, and you estimate p by the sample mean

5
p=— =0.02.
P= 250
What is the range of possible values of p assuming that the difference between
p and the sample mean p is within 5 times the standard deviation of the sample
mean?

Problem 42. Computational problem. Here is a probabilistic method for com-
puting the area of a given subset S of the unit square. The method uses a sequence of
independent random selections of points in the unit square [0, 1] x [0, 1], according to a
uniform probability law. If the ith point belongs to the subset S the value of a random
variable X; is set to 1, and otherwise it is set to 0. Let X;, X2,... be the sequence of
random variables thus defined, and for any n, let

X+ X4+ X,
~ .

Sn

(a) Show that E[Sy] is equal to the area of the subset S. and that var(S») diminishes
to 0 as n increases.

(b) Show that to calculate S,. it is sufficient to know S,_1 and X,, so the past
values of X, k=1,...,n — 1, do not need to be remembered. Give a formula.

(c) Write a computer program to generate S, for n = 1,2,...,10000, using the
computer's random number generator, for the case where the subset S is the
circle inscribed within the unit square. How can you use your program to measure
experimentally the value of 77

(d) Use a similar computer program to calculate approximately the area of the set
of all (z.y) that lie within the unit square and satisfy 0 < cosmz + sin7y < 1.
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Problem 43.* Suppose that X and Y are independent, identically distributed, geo-
metric random variables with parameter p. Show that

1
n—1

PX=ilX+Y=n)= , i=1,...,n—1.

Solution. Consider repeatedly and independently tossing a coin with probability of
heads p. We can interpret P(X = i| X +Y = n) as the probability that we obtained
a head for the first time on the ith toss given that we obtained a head for the second
time on the nth toss. We can then argue, intuitively, that given that the second head
occurred on the nth toss, the first head is equally likely to have come up at any toss
between 1 and n — 1. To establish this precisely, note that we have

P(X=i X+Y=n PX=:9)PY =n-i)
P(X+Y =n) B P(X +Y =n)

P(X=i|X+Y =n)=

Also ‘
P(X =i)=p(1-p)'"', fori>1,

and .
P(Y=n-i)=p1-p)" """, forn—-i>l.
It follows that

pPAQ-p™? ifi=1,...,n—1,

P(X=49)P(Y=n-1) = { 0 otherwise.

Therefore, for any ¢ and j in the range [1,n — 1], we have
P X=i|X+Y=n)=PX=j|X+Y =n).

Hence
1

Problem 44.* Let X and Y be two random variables with given joint PMF, and
let ¢ and h be two functions of X and Y, respectively. Show that if X and Y are
independent, then the same is true for the random variables g(X) and h(Y").

Solution. Let U = g(X) and V = h(Y'). Then, we have

pU,V(u,’U) = Z PX,Y(l',y)

{(z,y) | 9(z)=u, h(y)=v}

= > px (z)py (y)

{(z.y) | g(z)=u, h(y)=v}

Yo opx@ ), pr()

{z l9(z)=u} {z | h(y)=v}

= pu(u)pv (v),

so U and V are independent.
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Problem 45.* Variability extremes. Let X,..., X, be independent random vari-
ables and let X = X; + .-+ X, be their sum.

(a) Suppose that each X, is Bernoulli with parameter p;, and that p),...,pn are
chosen so that the mean of X is a given p > 0. Show that the variance of X is
maximized if the p; are chosen to be all equal to p/n.

(b) Suppose that each X; is geometric with parameter p;, and that pi,...,p, are
chosen so that the mean of X is a given u > 0. Show that the variance of X
is minimized if the p; are chosen to be all equal to n/u. [Note the strikingly
different character of the results of parts (a) and (b).]

Solution. (a) We have

n

var(X) = Zvar(X,-) = Zpi(l —pi)=p- ZP?-

1=1
Thus maximizing the variance is equivalent to minimizing ) ._ p?. It can be seen

(using the constraint Y ._ p; = p) that

> opl=D (u/n 4 (pi - p/n)

so Y°" . p? is minimized when p, = p/n for all i.

(b) We have
n n l
w=3ExI=3 L
=1 =1

and
n n

var(X) = Zvar(X,) = Z ! ;fi.

1=1 1=1

Introducing the change of variables y, = 1/p; = E[X;]. we see that the constraint

becomes .
D=
i=1

and that we must minimize

dowlyi—1)=) ¥i-n
i=1 i=1

subject to that constraint. This is the same problem as the one of part (a), so the
method of proof given there applies.

Problem 46.* Entropy and uncertainty. Consider a random variable X that can
take n values. ,....,Tn, with corresponding probabilities p;,...,p,. The entropy of
X is defined to be

H(X)=- Zpi log p..
=1
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(All logarithms in this problem are with respect to base two.) The entropy H(X)
provides a measure of the uncertainty about the value of X. To get a sense of this, note
that H(X) > 0 and that H(X) is very close to 0 when X is “nearly deterministic,”
i.e., takes one of its possible values with probability very close to 1 (since we have
plogp = 0 if either p~ 0 or px 1).

The notion of entropy is fundamental in information theory, which originated
with C. Shannon’s famous work and is described in many specialized textbooks. For
example. it can be shown that H(X) is a lower bound to the average number of yes-no
questions (such as “is X = z1?” or “is X < z5?7”) that must be asked in order to deter-
mine the value of X. Furthermore, if k is the average number of questions required to
determine the value of a string of independent identically distributed random variables
X1.X2,....X,. then. with a suitable strategy. k/n can be made as close to H(X) as
desired, when n is large.

(a) Show that if q;..... g» are nonnegative numbers such that Z:; 19 =1, then

H(X) < - piloggs,

=1

with equality if and only if p; = ¢; for all i. As a special case, show that
H(X) < logn, with equality if and only if p, = 1/n for all i. Hint: Use the
inequality Ina < a — 1, for a > 0. which holds with equality if and only if & = 1;
here In a stands for the natural logarithm.

(b) Let X and Y be random variables taking a finite number of values, and having
joint PMF px .y (z,y). Define

px.y(z.y)
Ix Zszyxylog( x(z )py(y))'

Show that I(X,Y) > 0, and that I(X.Y) = O if and only if X and Y are
independent.

(c) Show that
I(X.Y)=H(X)+ H(Y)- H(X,Y),

where
H(X.Y)=- Z pr.y(z. y)logpx.v(z.y),

x Yy

H(X) = pr )logpx(a).  H(Y)= Zpy ) log py (u)

(d) Show that
I(X.Y) = H(X) - H(X|Y),

where

H(X|Y)= Zpy(y me(uy log px|v (z | y)-

[Note that H(X |Y') may be viewed as the conditional entropy of X given Y, that
is. the entropy of the conditional distribution of X. given that Y = y, averaged
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over all possible values y. Thus. the quantity I(X,Y) = H(X)— H(X |Y) is the
reduction in the entropy (uncertainty) on X, when Y becomes known. It can be
therefore interpreted as the information about X that is conveyed by Y. and is
called the mutual information of X and Y]

Solution. (a) We will use the inequality Ina < a—1. (To see why this inequality is true.
write Ina = [*37'd3 < [* dB = a —1for a > 1. and write Ina = — [ 371d8 <

—fal dB=a—-1for0<ac<1l.)
We have

—Zp,lnp,+2p,lnq, szln(q’) Zp, (- —1) = 0.

with equality if and only if p, = g, for all i. Since In p = logpln 2. we obtain the desired
relation H(X) < — Z:;l pi logq,. The inequality H(X) < logn is obtained by setting
gi = 1/n for all i.

(b) The numbers px (z)py (y) satisfy > _ Zy px (z)py (y) = 1. so by part (a), we have
YD pxv(@y)log(pxy(zy) 2 DD pxv(z.y)log(px(2)py (v)),

with equality if and only if

px.v(z,y) = px(z)py (v), for all z and y,

which is equivalent to X and Y being independent.
(c) We have

I(X,Y) =YY pxx(z,y)logpxy(z.y) = ) Y pxv(z,y) log(px (@)pv (),

T oy T oy

and

Z pr.Y(-’r- y)logpx,y(z.y) = —H(X,Y).

r oy

-ZZP“(“” y) log (px (z)pr (v)) ZprY z,y) log px (2)
- Zpr.y(x- y) log py ()

- — pr(z) logpx(x) — ZPY(y) log py (y)

y

= H(X)+ H(Y).

Combining the above three relations, we obtain I(X,Y) = H(X)+ H(Y) - H(X.Y).
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(d) From the calculation in part (c), we have

IX,Y) =YY pxy(z,y)logpxy(z,y) - Y_px(z)logpx(z)

_ Z pr,y(x, y) log py (v)

= H(X)+ Z Zpy(y pxiv (z|y) logpx v (z|y)

z Yy

— H(X) - H(X|Y).

Chap. 2



