CHAPTER

Gravitation

5.1 Introduction

By 1666, Newton had formulated and numerically checked the gravitation law
he eventually published in his book Principia in 1687. Newton waited almost 20
years to publish his results because he could not justify his method of numerical
calculation in which he considered Earth and the Moon as point masses. With *
mathematics formulated on calculus (which Newton later invented), we have a
much easier time proving the problem Newton found so difficult in the seven-
teenth century.

Newton'’s law of universal gravitation states that each mass particle attracts every
other particle in the universe with a force that varies directly as the product of the two
masses and inversely as the square of the distance between them. In mathematical form,
we write the law as

2 e, (5.1)

where at a distance r from a particle of mass M a second particle of mass m expe-
riences an attractive force (see Figure 5-1). The unit vector e, points from M to m,
and the minus sign ensures that the force is attractive—that is, that m is attracted
toward M.

A laboratory verification of the law and a determination of the value of Gwas
made in 1798 by the English physicist Henry Cavendish (1731-1810). Cavendish’s
experiment, described in many elementary physics texts, used a torsion balance
with two small spheres fixed at the ends of a light rod. The two spheres were at-
tracted to two other large spheres that could be placed on either side of the
smaller spheres. The official value for G is 6.673 * 0.010 X 10™"' N - m?/kg?
Interestingly, although G is perhaps the oldest known of the fundamental constants,
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FIGURE 5-1 Particle m feels an attractive gravitational force toward M.

we know it with less precision than we know most of the modern fundamental
constants such as ¢, ¢, and #. Considerable research is ongoing today to improve
the precision of G.

In the form of Equation 5.1, the law strictly applies only to point particles. If
one or both of the particles is replaced by a body with a certain extension, we
must make an additional hypothesis before we can calculate the force. We must
assume that the gravitational force field is a linear field. In other words, we as-
sume that it is possible to calculate the net gravitational force on a particle due
to many other particles by simply taking the vector sum of all the individual
forces. For a body consisting of a continuous distribution of matter, the sum be-
comes an integral (Figure 5-2):

F= —ch P (rQ)erdv’ (5.2)
vy T

where p(r’) is the mass density and dv’ is the element of volume at the position
defined by the vector r’ from the (arbitrary) origin to the point within the mass
distribution.

If both the body of mass M and the body of mass m have finite extension, a
second integration over the volume of m will be necessary to compute the total
gravitational force.

FIGURE 5-2 To find the gravitational force between a point mass m and a continuous
distribution of matter, we integrate the mass density over the volume.
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The gravitational field vector g is the vector representing the force per unit
mass exerted on a particle in the field of a body of mass M. Thus

F M
g——;z= —Gﬁe, (5.3)
or
_ p(re, |
g= —GL —a 4 (5.4)

Note that the direction of e, varies with ' (in Figure 5-2).

The quantity g has the dimensions of force per unit mass, also equal to accelera-
tion. In fact, near the surface of the earth, the magnitude of g is just the quantity
that we call the gravitational acceleration constant. Measurement with a simple
pendulum (or some more sophisticated variation) is sufficient to show that lg| is
approximately 9.80 m/s? (or 9.80 N/kg) at the surface of the earth.

5.2 Gravitational Potential

The gravitational field vector g varies as 1/ r? and therefore satisfies the require-
ment* that permits g to be represented as the gradient of a scalar function.

Hence, we can write
g=-Vo (5.5)

where @ is called the gravitational potential and has dimensions of ( force per unit
mass) X (distance), or energy per unit mass.

Because g has only a radial variation, the potential @ can have at most a vari-
ation with 7. Therefore, using Equation 5.3 for g, we have

dd M
VO = —e = G—
dr ¢ r? e

Integrating, we obtain

M
®=-G— (5.6)

The possible constant of integration has been suppressed, because the potential
is undetermined to within an additive constant; that is, only differences in poten-
tial are meaningful, not particular values. We usually remove the ambiguity in
the value of the potential by arbitrarily requiring that @ —0 as r— oo; then
Equation 5.6 correctly gives the potential for this condition.

*Thatis, VX g =0.
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The potential due to a continuous distribution of matter is

@ = —GJ' P 4y (5.7)
v r

Similarly, if the mass is distributed only over a thin shell (i.e., a surface distri-
bution), then

<P=—Gf&da' (5.8)
s 7T
where p; is the surface density of mass (or areal mass density).

Finally, if there is a line source with linear mass density p,, then

@ = —GJ Pras (5.9)
rr

The physical significance of the gravitational potential function becomes
clear if we consider the work per unit mass dW’ that must be done by an outside
agent on a body in a gravitational field to displace the body a distance dr. In this
case, work is equal to the scalar product of the force and the displacement.
Thus, for the work done on the body per unit mass, we have

dW' = —g+dr = (VD) - dr

) A N (5.10)
i axi !

because @ is a function only of the coordinates of the point at which it is meas-
ured: @ = P(x, xo, x3) = P(x;). Therefore the amount of work per unit mass
that must be done on a body to move it from one position to another in a gravi-
tational field is equal to the difference in potential at the two points.

If the final position is farther from the source of mass M than the initial posi-
tion, work has been done on the unit mass. The positions of the two points are arbi-
trary, and we may take one of them to be at infinity. If we define the potential to
be zero at infinity, we may interpret @ at any point to be the work per unit mass
required to bring the body from infinity to that point. The potential energy is
equal to the mass of the body multiplied by the potential @. If U is the potential
energy, then

U= m® (5.11)

and the force on a body is given by the negative of the gradient of the potential
energy of that body,

F=-VU (5.12)

which is just the expression we have previously used (Equation 2.88).

We note that both the potential and the potential energy increase when work
is done on the body. (The potential, according to our definition, is always nega-
tive and only approaches its maximum value, that is, zero, as r tends to infinity.)



186 5 / GRAVITATION

A certain potential energy exists whenever a body is placed in the gravita-
tional field of a source mass. This potential energy resides in the field,* but it is
customary under these circumstances to speak of the potential energy “of the
body.” We shall continue this practice here. We may also consider the source
mass itself to have an intrinsic potential energy. This potential energy is equal to
the gravitational energy released when the body was formed or, conversely, is
equal to the energy that must be supplied (i.e., the work that must be done) to
disperse the mass over the sphere at infinity. For example, when interstellar gas
condenses to form a star, the gravitational energy released goes largely into the
initial heating of the star. As the temperature increases, energy is radiated away
as electromagnetic radiation. In all the problems we treat, the structure of the
bodies is considered to remain unchanged during the process we are studying.
Thus, there is no change in the intrinsic potential energy, and it may be neg-
lected for the purposes of whatever calculation we are making.

EXAMPLE 5.1

What is the gravitational potential both inside and outside a spherical shell of
inner radius b and outer radius a?

Solution. One of the important problems of gravitational theory concerns the
calculation of the gravitational force due to a homogeneous sphere. This prob-
lem is a special case of the more general calculation for a homogeneous spheri-
cal shell. A solution to the problem of the shell can be obtained by directly com-
puting the force on an arbitrary object of unit mass brought into the field (see
Problem 5-6), but it is easier to use the potential method.

We consider the shell shown in Figure 5-3 and calculate the potential at
point P a distance R from the center of the shell. Because the problem has sym-
metry about the line connecting the center of the sphere and the field point P,
the azimuthal angle ¢ is not shown in Figure 5-3 and we can immediately inte-
grate over d¢ in the expression for the potential. Thus,

- J P L
v r

D

= -QWPGJ rfﬂdr'J 5“;—%9 (5.13)

b 0

where we have assumed a homogeneous mass distribution for the shell,
p(r") = p. According to the law of cosines,

r2=1924+ R?— 2R cos 0 (5.14)

Because R is a constant, for a given r’ we may differentiate this equation and
obtain

2rdr = 27'R sin 0 d6

*See, however, the remarks at the end of Section 9.5 regarding the energy in a field.
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FIGURE 5-3 The geometry for finding the gravitational potential at point Pdue to a
spherical shell of mass.

or

Sin b g = 47 (5.15)
r R

Substituting this expression into Equation 5.13, we have

27pG (¢ max
R v dr’ dr (5.16)

Tmin

=

b

The limits on the integral over dr depend on the location of point P. If Pis out-
side the shell, then

27‘. G a 'R+ 71’
DPR>a) = — P [r'dr’J dr
R b R—r'
47pG (¢
-
4 mpG,
= = = - b .
3 R (a ) (5.17)
But the mass M of the shell is
4
M= g'ﬂp(as — 5% (5.18)

so the potential is

SR> a) = — QR— (5.19)
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If the field point lies inside the shell, then

27TpG a '+ R
PR b)) = ———| 7rdr dr
R b r"-R
= —471’pGJ r'dr'
b
= —2mwpG(a® — b?) (5.20)

The potential is therefore constant and independent of position inside the shell.
Finally, if we wish to calculate the potential for points within the shell, we

need only replace the lower limit of integration in the expression for @(R < &)

by the variable R, replace the upper limit of integration in the expression for

@ (R > a) by R, and add the results. We find

4m7pG
P(b<R<a)=- _7;;_(33 ~ %) — 2mpG(a® — RY)
a? b R?
= —4 e .
71'pG<2 3R 6) (5.21)

We see that if R— a, then Equation 5.21 yields the same result as Equation 5.19
for the same limit. Similarly, Equations 5.21 and 5.20 produce the same result
for the limit R— b. The potential is therefore continuous. If the potential were
not continuous at some point, the gradient of the potential—and hence, the
force—would be infinite at that point. Because infinite forces do not represent
physical reality, we conclude that realistic potential functions must always be
continuous.

Note that we treated the mass shell as homogeneous. In order to perform
calculations for a solid, massive body like a planet that has a spherically symmet-
ric mass distribution, we could add up a number of shells or, if we choose, we
could allow the density to change as a function of radius.

The results of Example 5.1 are very important. Equation 5.19 states that the
potential at any point outside of a spherically symmetric distribution of matter
(shell or solid, because solids are composed of many shells) is independent of
the size of the distribution. Therefore, to calculate the external potential (or the
force), we consider all the mass to be concentrated at the center. Equation 5.20
indicates that the potential is constant (and the force zero) anywhere inside a
spherically symmetric mass shell. And finally, at points within the mass shell, the
potential given by Equation 5.21 is consistent with both of the previous results.

The magnitude of the field vector g may be computed from g = —d®/dR for
each of the three regions. The results are

gR< ) =0
db<R<a)=TES(E _ 5
5 \z2 (5.22)
g(R > a)=-—-GA/I

R?
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@D = const

-

b a
FIGURE 54 The results of Example 5.1 indicating the gravitational potential
and magnitude of the field vector g (actually —g) as a function
of radial distance.

We see that not only the potential but also the field vector (and hence, the
force) are continuous. The derivative of the field vector, however, is not continu-
ous across the outer and inner surfaces of the shell.

All these results for the potential and the field vector can be summarized as
in Figure 5-4.

EXAMPLE 5.2

Astronomical measurements indicate that the orbital speed of masses in many
spiral galaxies rotating about their centers is approximately constant as a func-
tion of distance from the center of the galaxy (like our own Milky Way and our
nearest neighbor Andromeda) as shown in Figure 5-5. Show that this experi-
mental result is inconsistent with the galaxy having its mass concentrated near
the center of the galaxy and can be explained if the mass of the galaxy increases
with distance R.

Solution. We can find the expected orbital speed v due to the galaxy mass M
that is within the radius R. In this case, however, the distance R may be hundreds
of light years. We only assume the mass distribution is spherically symmetric.
The gravitational force in this case is equal to the centripetal force due to the
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FIGURE 5-5 Example 5.2. The solid line represents data for the orbital speed of mass
as a function of distance from the center of the Andromeda galaxy. The
dashed line represents the 1/ /R behavior expected from the Keplerian
result of Newton’s laws.

mass m having orbital speed v:

We solve this equation for v:

|GM
v=|—
R

If this were the case, we would expect the orbital speed to decrease as 1/ \/ﬁ as
shown by the dashed line in Figure 5-5, whereas what is found experimentally is
that v is constant as a function of R. This can only happen in the previous equa-
tion if the mass M of the galaxy itself is a linear function of R, M(R) x R.
Astrophysicists conclude from this result that for many galaxies there must be
matter other than that observed, and that this unobserved matter, often called
“dark matter,” must account for more than 90 percent of the known mass in the
universe. This area of research is at the forefront of astrophysics today.

Consider a thin uniform circular ring of radius @ and mass M. A mass m is
placed in the plane of the ring. Find a position of equilibrium and determine
whether it is stable.

Solution. From symmetry, we might believe that the mass m placed in the cen-
ter of the ring (Figure 5-6) should be in equilibrium because it is uniformly sur-
rounded by mass. Put mass m at a distance 1’ from the center of the ring, and
place the x-axis along this direction.
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FIGURE 5-6 Example 5.3. The geometry of the point mass m and ring of mass M.

The potential is given by Equation 5.7 where p = M/2wa:

G
ad = —G%/I =~ %” dé (5.23)

where bis the distance between dM and m, and dM = padé. Let r and r’ be the
position vectors to dM and m, respectively.

b=|r—r'| = lacos pe, + asin pe, — 7'e,|
=|(acosd — r)e; + asin dpey| = [(acosd — )2 + a2 sin? ¢]1/2
r\2 oy 12
=(a®+r?—2arcos )2 =all + =) — 5 cos (5.24)

Integrating Equation 5.23 gives

27
d(ry = —GJ'%/I= —paGJ d—¢

2m
- Z

(5.25)
N\ 2 ’ 1/2
0 ,:1+(1> ~2—Tcos :l

a a

The integral in Equation 5.25 is difficult, so let us consider positions close to
the equilibrium point, " = 0. If ' << a4, we can expand the denominator in
Equation 5.25.

N\ 2 ' —-1/2 N\ 2 ,
[1 + (L) _ 2 cos :| =1- l|:<r—) _ cos :l
a a 2( \a a
3l (r\2 2/ 2
+§l:(;) - 7C08¢:, + -

—1+£’ +l£23 2o —1) + -+ (5.26
= acosqS 2a(cosqS ) (5.26)




192 5 / GRAVITATION

Equation 5.25 becomes

Fd ’ '\ 2
P(r') = —pr {1 + = cos ¢ + 1 (L) (3 cos2¢p — 1) + '--}d(b (5.27)
0 a 2 \a

which is easily integrated with the result

~ _ MG 1(r\2
D(r') = A I:l + 1 (a) + :I (5.28)
The potential energy U(r') is from Equation 5.11, simply
, . mMG 1[r\?
U(r') = m®(r') = 2 [1 + 1 (a) + :I (5.29)

The position of equilibrium is found (from Equation 2.100) by

au(r) mMG1 v
—l=0=- “ L4 5.
dar a 2a? (5.30)

so 7' = 0 is an equilibrium point. We use Equation 2.103 to determine the stability:

da2U(r") mMG
T = — Y + - <0 (5.31)

so the equilibrium point is unstable.

This last result is not obvious, because we might be led to believe that a small
displacement from ' = 0 might still be returned to 7 = 0 by the gravitational
forces from all the mass in the ring surrounding it.

Poisson’s Equation

Itis useful to compare these properties of gravitational fields with some of the fa-
miliar results from electrostatics that were determined in the formulation of
Maxwell’s equations. Consider an arbitrary surface as in Figure 5-7 with a mass m
placed somewhere inside. Similar to electric flux, let’s find the gravitational flux
®,, emanating from mass m through the arbitrary surface S.

D, = J n-gda (5.32)
s

where the integral is over the surface Sand the unit vector n is normal to the
surface at the differential area da. If we substitute g from Equation 5.3 for
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Surface §

FIGURE 5-7 An arbitrary surface with a mass m placed inside. The unit vector n is
normal to the surface at the differential area da.

the gravitational field vector for a body of mass m, we have for the scalar
productn - g,

cos 8

r2

n-g=—-Gm

where 6 is the angle between n and g. We substitute this into Equation 5.32 and
obtain

0
@, = —ij COZ da
s T

The integral is over the solid angle of the arbitrary surface and has the value 47
steradians, which gives for the mass flux

D, = Jn-g da= —47Gm (5.33)
s
Note that it is immaterial where the mass is located inside the surface S. We can

generalize this result for many masses m; inside the surface S by summing over
the masses.

Jn-g da= —47G 2m, (5.34)
S 1

If we change to a continuous mass distribution within surface S, we have

J' n-gda= ——41rGJ pdv (5.35)
s v

where the integral on the right-hand side is over the volume V enclosed by S, p is
the mass density, and dv is the differential volume. We use Gauss’s divergence
theorem to rewrite this result. Gauss’s divergence theorem, Equation 1.130
where da = n daq, is

Jn-gda=jv-gdv (5.36)
N 4
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If we set the right-hand sides of Equations 5.35 and 5.36 equal, we have

J (—4mG)pdv = J V-gdv

v v

and because the surface §, and its volume V, is completely arbitrary, the two inte-
grands must be equal.

V-g=—-4wGp (5.37)

This result is similar to the differential form of Gauss’s law for electric field,
V-E = p/e, where p in this case is the charge density.

We insert g = — V@ from Equation 5.5 into the lefthand side of Equation
5.37 and obtain V-g = — V- V@ = — V2. Equation 5.37 becomes

V2D = 47 Gp (5.38)

which is known as Poisson’s equation and is useful in a number of potential theory
applications. When the right-hand side of Equation 5.38 is zero, the result
V2@ = 0 is an even better known equation called Laplace’s equation. Poisson’s
equation is useful in developing Green’s functions, whereas we often encounter
Laplace’s equation when dealing with various coordinate systems.

5.3 Lines of Force and Equipotential Surfaces

Let us consider a mass that gives rise to a gravitational field that can be described
by a field vector g. Let us draw a line outward from the surface of the mass such
that the direction of the line at every point is the same as the direction of g at
that point. This line will extend from the surface of the mass to infinity. Such a
line is called a line of force.

By drawing similar lines from every small increment of surface area of the
mass, we can indicate the direction of the force field at any arbitrary point in
space. The lines of force for a single point mass are all straight lines extending
from the mass to infinity. Defined in this way, the lines of force are related only
to the direction of the force field at any point. We may consider, however, that the
density of such lines—that is, the number of lines passing through a unit area ori-
ented perpendicular to the lines—is proportional to the magnitude of the force
at that area. The lines-of-force picture is thus a convenient way to visualize both
the magnitude and the direction (i.e., the vector property) of the field.

The potential function is defined at every point in space (except at the posi-
tion of a point mass). Therefore, the equation

D = D(xy, xy, x3) = constant (5.39)

defines a surface on which the potential is constant. Such a surface is called an
equipotential surface. The field vector g is equal to the gradient of @, so g can
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FIGURE 58 The equipotential surfaces due to two point masses M.

have no component along an equipotential surface. It therefore follows that
every line of force must be normal to every equipotential surface. Thus, the field
does no work on a body moving along an equipotential surface. Because the po-
tential function is single valued, no two equipotential surfaces can intersect or
touch. The surfaces of equal potential that surround a single, isolated point
mass (or any spherically symmetric mass) are all spheres. Consider two point
masses M that are separated by a certain distance. If 7, is the distance from one
mass to some point in space and if 7, is the distance from the other mass to the
same point, then
=3
&b = —-GM|— + — | = constant (5.40)
o7

defines the equipotential surfaces. Several of these surfaces are shown in Figure
5-8 for this two-particle system. In three dimensions, the surfaces are generated
by rotating this diagram around the line connecting the two masses.

5.4 When Is the Potential Concept Useful?

The use of potentials to describe the effects of “action-at-a-distance” forces is an
extremely important and powerful technique. We should not, however, lose
sight of the fact that the ultimate justification for using a potental is to provide a



