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convenient means of calculating the force on a body (or the energy for the body
in the field)—for it is the force (and energy) and not the potential that is the phys-
ically meaningful quantity. Thus, in some problems, it may be easier to calculate
the force directly, rather than computing a potential and then taking the gradi-
ent. The advantage of using the potential method is that the potential is a scalar
quantity*: We need not deal with the added complication of sorting out the
components of a vector until the gradient operation is performed. In direct cal-
culations of the force, the components must be carried through the entire com-
putation. Some skill, then, is necessary in choosing the particular approach to
use. For example, if a problem has a particular symmetry that, from physical
considerations, allows us to determine that the force has a certain direction,
then the choice of that direction as one of the coordinate directions reduces the
vector calculation to a simple scalar calculation. In such a case, the direct calcu-
lation of the force may be sufficiently straightforward to obviate the necessity of
using the potential method. Every problem requiring a force must be examined
to discover the easiest method of computation.

EXAMPLE 5.4

Consider a thin uniform disk of mass M and radius a. Find the force on a mass
mlocated along the axis of the disk.

Solution. 'We solve this problem by using both the potential and direct force
approaches. Consider Figure 5.9. The differential potential d@ at a distance zis

FIGURE 5-9 Example 5.4. We use the geometry shown here to find the gravitational
force on a point mass m due to a thin uniform disk of mass M.

*We shall see in Chapter 7 another example of a scalar function from which vector results may be ob-
tained. This is the Lagrangian function, which, to emphasize the similarity, is sometimes (mostly in
older treatments) called the kinetic potential.
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given by

aM
ad = —G—r‘ (5.41)

The differential mass dM is a thin ring of width dx, because we have azimuthal
symmetry.
dM = pdA = p2mx dx (5.42)

x dx

x dx
dd = —QWpG—T— = *QWme

- _ ‘_ 2dx 2 oy
D(2) prL o+ )1 2mpG(x? + 22) A
= —2mpG[(a® + 22)/2 — ] (5.43)

We find the force from
F=—-VU= —mVd (5.44)

From symmetry, we have only a force in the z direction,

0D (2)
0z

(5.45)

F,=—-m

z
= +27TmpGl:(—a2+—z2)l/—§ - l:l

In our second method, we compute the force directly using Equation 4.2:

dF = — Gm% e, (5.46)
T

where dM’ refers to the mass of a small differential area more like a square than
a thin ring. The vectors complicate matters. How can symmetry help? For every
small dM’ on one side of the thin ring of width dx, another dM’ exists on the
other side that exactly cancels the horizontal component of dF on m. Similarly,
all horizontal components cancel, and we need only consider the vertical com-
ponent of dF along z.

6 dM’
dF, = cos 8| dF| = —mGE)—sz—
’
and, because cos 8 = z/7,
dF, = —mc= 2
r

Now we integrate over the mass dM' = p27rx dx around the ring and obtain

27 xz dx
3

dF, = ~mGp

r
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and

-9 u
= -] |

= 27TmpG|:——Z— 1} (5.47)

(a? + 2212 N

which is identical to Equation 5.45. Notice that the value of F, is negative, indi-
cating that the force is downward in Figure 5-9 and attractive.

5.5 Ocean Tides

The ocean tides have long been of interest to humans. Galileo tried unsuccess-
fully to explain ocean tides but could not account for the timing of the approxi-
mately two high tides each day. Newton finally gave an adequate explanation.
The tides are caused by the gravitational attraction of the ocean to both the
Moon and the Sun, but there are several complicating factors.

The calculation is complicated by the fact that the surface of Earth is not an
inertial system. Earth and Moon rotate about their center of mass (and move
about the Sun), so we may regard the water nearest the Moon as being pulled
away from Earth, and Earth as being pulled away from the water farthest from
the Moon. However, Earth rotates while the Moon rotates about Earth. Let’s first
consider only the effect of the Moon, adding the effect of the Sun later. We will
assume a simple model whereby Earth’s surface is completely covered with
water, and we shall add the effect of Earth’s rotation at an appropriate time. We
set up an inertial frame of reference x'y'z" as shown in Figure 5.10a. We let M,,
be the mass of the Moon, r the radius of a circular Earth, and D the distance
from the center of the Moon to the center of Earth. We consider the effect of
both the Moon’s and Earth’s gravitational attraction on a small mass m placed on
the surface of Earth. As displayed in Figure 5-10a, the position vector of the mass
m from the Moon is R, from the center of Earth is r, and from our inertial system
r,.. The position vector from the inertial system to the center of Earth is rg. As
measured from the inertial system, the force on m, due to the earth and the
Moon, is

GmMyp GmM,,

m¥, = 2 & T T R (5.48)

Similarly, the force on the center of mass of Earth caused by the Moon is

GMM,,

wr
Mgy = D2

ep (5.49)
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FIGURE 5-10 (a) Geometry to find ocean tides on Earth due to the Moon.

(b) Polar view with the polar axis along the z-axis.
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We want to find the acceleration # as measured in the noninertial system

placed at the center of Earth. Therefore, we want

F=17,— 7= - M,
_ GMy GM,, GM,,
= — 2 e, — R? erp + D2 ep
_ GMg e €p

(5.50)

The first part is due to Earth, and the second part is the acceleration from the
tidal force, which is responsible for producing the ocean tides. It is due to the
difference between the Moon’s gravitational pull at the center of Earth and on

Earth’s surface.
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We next find the effect of the tidal force at various points on Earth as
noted in Figure 5-10b. We show a polar view of Earth with the polar axis along
the z-axis. The tidal force F,on the mass m on Earth’s surface is

€z  ©p
¥r,=—-GmM, E - BE (5.51)

where we have used only the second part of Equation 5.50. We look first at point
a, the farthest point on Earth from the Moon. Both unit vectors e, and ej are
pointing in the same direction away from the Moon along the x-axis. Because R
> D, the second term in Equation 5.51 predominates, and the tidal force is
along the +x-axis as shown in Figure 5-10b. For point 5, R < D and the tidal
force has approximately the same magnitude as at point a because r/D << 1, but
is along the —x-axis. The magnitude of the tidal force along the x-axis, Fr,, is

1 1 1 1
FTx = —GmMm(ﬁ - E) = TGmM,,,(m - E)

__GmM,,, 1
D? r\2
1+ =

D

We expand the first term in brackets using the (1 + x) 2 expansion in Equation
D.9.

-1

Fro= =)y o Ty g (1) B )
Tx — D2 D D - D3 (' )

where we have kept only the largest nonzero term in the expansion, because r/D =
0.02.

For point ¢, the unit vector ey (Figure 5-10b) is not quite exactly along ep,
but the x-axis components approximately cancel, because R = D and the x-com-
ponents of e, and e, are simijlar. There will be a small component of ey along
the y-axis. We approximate the y-component of e by (+/D)j, and the tidal force
at point ¢, call it FTy, is along the y-axis and has the magnitude

1 r GmM,r
= - (5.53)

Fpy = #GmMm(ﬁB = e
Note that this force is along the —y-axis toward the center of Earth at point ¢. We
find similarly at point D the same magnitude, but the component of e, will be
along the —y-axis, so the force itself, with the sign of Equation 5.53, will be along
the +y-axis toward the center of Earth. We indicate the tidal forces at points a, b,
¢, and d on Figure 5-11a.
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FIGURE 5-11 (a) The tidal forces are shown at various places on Earth’s surface

including the points g, b, ¢, and d of Figure 5-10. (b) An exaggerated
view of Earth’s ocean tides.

We determine the force at an arbitrary point ¢ by noting that the x- and y-
components of the tidal force can be found by substituting x and y for r in Fyp,
and Fy,, respectively, in Equations 5.52 and 5.53.

2GmM ,x

mE T
GmM.,,y
Fr=— D
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Then at an arbitrary point such as ¢, we let x = rcos § and y = 7 sin 6, so we have

_ 2GmM,,r cos 0

- D8 (5.54a)
GmM ,r sin 6
Fp=——7s (5.54b)

Equations 5.54a and b give the tidal force around Earth for all angles 6. Note
that they give the correct result at points a, b, ¢, and d.

Figure 5-11a gives a representation of the tidal forces. For our simple model,
these forces lead to the water along the y-axis being more shallow than along
the x-axis. We show an exaggerated result in Figure 5-11b. As Earth makes a rev-
olution about its own axis every 24 hours, we will observe two high tides a day.

A quick calculation shows that the Sun’s gravitational attraction is about 175
times stronger than the Moon’s on Earth’s surface, so we would expect tidal
forces from the Sun as well. The tidal force calculation is similar to the one we
have just performed for the Moon. The result (Problem 5-18) is that the tidal
force due to the Sun is 0.46 that of the Moon, a sizable effect. Despite the
stronger attraction due to the Sun, the gravitational force gradient over the sur-
face of Earth is much smaller, because of the much larger distance to the Sun.

EXAMPLE 5.5
Calculate the maximum height change in the ocean tides caused by the Moon.

Solution. We continue to use our simple model of the ocean surrounding
Earth. Newton proposed a solution to this calculation by imagining that two
wells be dug, one along the direction of high tide (our x-axis) and one along
the direction of low tide (our y-axis). If the tidal height change we want to de-
termine is 4, then the difference in potential energy of mass m due to the
height difference is mgh. Let’s calculate the difference in work if we move the
mass m from point ¢ in Figure 5-12 to the center of Earth and then to point a.
This work W done by gravity must equal the potential energy change mgh. The
work Wis

0 r+8,
W= J’ FTydy+ J FTxdx
r+8, 0

where we use the tidal forces Fr, and Fy, of Equations 5.54. The small distances
07 and 84 are to account for the small variations from a spherical Earth, but
these values are so small they can be henceforth neglected. The value for W

becomes
GmM,,[ ° ’
W= D ) (—y)dy + 02xdx

GmM,, [r? 3GmM,,r?
= —+ )= —
(27 e
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Earth

FIGURE 5-12 Example 5.5. We calculate the work done to move a point mass m from
point cto the center of Earth and then to point a.

Because this work is equal to mgh, we have

3GmM ,r?
2D3

_ 3GM,,»?

 2gD?

mgh =
(5.55)

Note that the mass m cancels, and the value of 2 does not depend on m. Nor
does it depend on the substance, so to the extent Earth is plastic, similar tidal
effects should be (and are) observed for the surface land. If we insert the
known values of the constants into Equation 5.55, we find

,  3(6:67 X 107" m kg% (7.350 X 10%kg) (6.37 X 10°m)?
B 2(9.80 m/s?) (3.84 X 108m)3

=054 m

The highest tides (called spring tides) occur when Earth, the Moon, and the
Sun are lined up (new moon and full moon), and the smallest tides (called neap
tides) occur for the first and third quarters of the Moon when the Sun and
Moon are at right angles to each other, partially cancelling their effects. The
maximum tide, which occurs every 2 weeks, should be 1.46~2 = 0.83 m for the
spring tides.

An observer who has spent much time near the ocean has noticed that typi-
cal oceanshore tides are greater than those calculated in Example 5.5. Several
other effects come into play. Earth is not covered completely with water, and the
continents play a significant role, especially the shelfs and narrow estuaries.
Local effects can be dramatic, leading to tidal changes of several meters. The
tides in midocean, however, are similar to what we have calculated. Resonances
can affect the natural oscillation of the bodies of water and cause tidal changes.
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FIGURE 5-13 Some effects cause the high tides to not be exactly along
the Earth-Moon axis.

Tidal friction between water and Earth leads to a significant amount of energy
loss on Earth. Earth is not rigid, and it is also distorted by tidal forces.

In addition to the effects just discussed, remember that as Earth rotates, the
Moon is also orbiting Earth. This leads to the result that there are not quite ex-
actly two high tides per day, because they occur once every 12 h and 26 min
(Problem 5-19). The plane of the moon’s orbit about Earth is also not perpendi-
cular to Earth’s rotation axis. This causes one high tide each day to be slightly
higher than the other. The tidal friction between water and land mentioned pre-
viously also results in Farth “dragging” the ocean with it as Earth rotates. This
causes the high tides to be not quite along the Earth-Moon axis, but rather sev-
eral degrees apart as shown in Figure 5-13.

PROBLEMS

5-1. Sketch the equipotential surfaces and the lines of force for two point masses sepa-
rated by a certain distance. Next, consider one of the masses to have a fictitious
negative mass —M. Sketch the equipotential surfaces and lines of force for this
case. To what kind of physical situation does this set of equipotentials and field
lines apply? (Note that the lines of force have direction; indicate this with appropri-
ate arrows.)

5-2. If the field vector is independent of the radial distance within a sphere, find the
function describing the density p = p(r) of the sphere.
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5-3.

54,

5-5.

5-6.

5-7.

5-8.

5.9,

5-10.

5-11.

5-12,

5-13.

Assuming that air resistance is unimportant, calculate the minimum velocity a par-
ticle must have at the surface of Earth to escape from Earth’s gravitational field.
Obtain a numerical value for the result. (This velocity is called the escape velocity.)

A particle at rest is attracted toward a center of force according to the relation F =
—mk*/x’. Show that the time required for the particle to reach the force center
from a distance dis d%/k.

A particle falls to Earth starting from rest at a great height (many times Earth’s
radius). Neglect air resistance and show that the particle requires approximately %
of the total time of fall to traverse the first half of the distance.

Compute directly the gravitational force on a unit mass at a point exterior to a ho-
mogeneous sphere of matter.

Calculate the gravitational potential due to a thin rod of length ! and mass M at a
distance R from the center of the rod and in a direction perpendicular to the rod.

Calculate the gravitational field vector due to a homogeneous cylinder at exterior
points on the axis of the cylinder. Perform the calculation (a) by computing the
force directly and (b) by computing the potential first.

Calculate the potential due to a thin circular ring of radius a and mass M for points
lying in the plane of the ring and exterior to it. The result can be expressed as an
elliptic integral.* Assume that the distance from the center of the ring to the field
point is large compared with the radius of the ring. Expand the expression for the
potential and find the first correction term.

Find the potential at off-axis points due to a thin circular ring of radius @ and mass
M. Let R be the distance from the center of the ring to the field point, and let  be
the angle between the line connecting the center of the ring with the field point
and the axis of the ring. Assume R>> g so that terms of order (a/R)? and higher
may be neglected.

Consider a massive body of arbitrary shape and a spherical surface that is exterior
to and does not contain the body. Show that the average value of the potential due
to the body taken over the spherical surface is equal to the value of the potential at
the center of the sphere.

In the previous problem, let the massive body be inside the spherical surface. Now
show that the average value of the potential over the surface of the sphere is equal
to the value of the potential that would exist on the surface of the sphere if all the
mass of the body were concentrated at the center of the sphere.

A planet of density p; (spherical core, radius R,) with a thick spherical cloud of
dust (density py, radius Ry) is discovered. What is the force on a particle of mass m
placed within the dust cloud?

*See Appendix B for a list of some elliptic integrals.
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5-14.

5-15.

5-16.

5-17.

5-18.

5-19.

5-20.

5-21.
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Show that the gravitational self-energy (energy of assembly piecewise from infinity)
of a uniform sphere of mass M and radius Ris

3 GM?

5 R

A particle is dropped into a hole drilled straight through the center of Earth.
Neglecting rotational effects, show that the particle’s motion is simple harmonic if
you assume Earth has uniform density. Show that the period of the oscillation is
about 84 min.

A uniformly solid sphere of mass M and radius Ris fixed a distance s above a thin
infinite sheet of mass density p, (mass/area). With what force does the sphere at-
tract the sheet?

Newton’s model of the tidal height, using the two water wells dug to the center of

Earth, used the fact that the pressure at the bottom of the two wells should be the

same. Assume water is incompressible and find the tidal height difference &,

Equation 5.55, due to the Moon using this model. (Hint: [i™pg,dy = [o™pg,dx;
= Xpax — Ymaw WHET€ X T Ymax = 2Rearn, and Reae, is Earth’s median radius.)

Show that the ratio of maximum tidal heights due to the Moon and Sun is given by
M m REs 3
M\ D

and that this value is 2.2. Ry, is the distance between the Sun and Earth, and M, is
the Sun’s mass.

The orbital revolution of the Moon about Earth takes about 27.3 days and is in the
same direction as Earth’s rotation (24 h). Use this information to show that high
tides occur everywhere on Earth every 12 h and 26 min.

A thin disk of mass M and radius R lies in the (x, y) plane with the z-axis passing
through the center of the disk. Calculate the gravitational potential $(z) and the
gravitational field g(z) = —V®@(z) = ~kd®(2)/dz on the z-axis.

A point mass mis located a distance D from the nearest end of a thin rod of mass M
and length L along the axis of the rod. Find the gravitational force exerted on the
point mass by the rod.



